Browsing by Department "#PLACEHOLDER_PARENT_METADATA_VALUE#"
- Results Per Page
- Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Open Access A 1.9 Earth Radius Rocky Planet and the Discovery of a Non-transiting Planet in the Kepler-20 System(2016) ;Buchhave, Lars A. ;Dressing, Courtney D. ;Dumusque, Xavier ;Rice, Ken ;Vanderburg, Andrew ;Mortier, Annelies ;Lopez-Morales, Mercedes ;Lopez, Eric ;Lundkvist, Mia S. ;Kjeldsen, Hans; ; ;Charbonneau, David ;Collier Cameron, Andrew; ;Figueira, Pedro ;Fiorenzano, Aldo F. M.; ;Haywood, Raphaëlle D. ;Johnson, John Asher ;Latham, David W. ;Lovis, Christophe; ;Mayor, Michel; ; ;Motalebi, Fatemeh; ;Pepe, Francesco ;Phillips, David F. ;Piotto, Giampaolo ;Pollacco, Don ;Queloz, Didier ;Sasselov, Dimitar ;Ségransan, Damien; ;Udry, StéphaneWatson, ChrisKepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own solar system. A transition from rocky to gaseous planets with a planetary transition radius of ∼1.6 R_E has recently been proposed by several articles in the literature. Kepler-20b (R_p ∼ 1.9 R_E) has a size beyond this transition radius; however, previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system that are facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star (M_star = 0.948+/- 0.051 M☉ and R_star = 0.964+/- 0.018 R☉). Kepler-20b is a 1.868_(-0.034)^(+0.066) R_E planet in a 3.7 day period with a mass of 9.70_(-1.44)^(+1.41) M_E, resulting in a mean density of 8.2_(-1.3)^(+1.5) g/cm^3, indicating a rocky composition with an iron-to-silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of 19.96_(-3.61)^(+3.08) M_E and an orbital period of ∼34 days in the gap between Kepler-20f (P ∼ 11 days) and Kepler-20d (P ∼ 78 days). -- Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofísica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.152 68 - Some of the metrics are blocked by yourconsent settings
Publication Metadata only 158 - Some of the metrics are blocked by yourconsent settings
Publication Open Access 10.4 m GTC observations of the nearby VHE-detected GRB 190829A/SN 2019oyw(2021) ;Hu, Y. -D. ;Castro-Tirado, A. J. ;Kumar, A. ;Gupta, R. ;Valeev, A. F. ;Pandey, S. B. ;Kann, D. A. ;Castellón, A. ;Agudo, I. ;Aryan, A. ;Caballero-García, M. D. ;Guziy, S. ;Martin-Carrillo, A. ;Oates, S. R.; ; ;Sokolov, V. V.Zhang, B. -B.Aims: Gamma-ray burst (GRB) 190829A (z = 0.0785) was detected by Fermi and Swift and also at very high energy (VHE) by the High-Energy Stereoscopic System (H.E.S.S.) telescopes. The prompt emission displayed two emission episodes separated by a quiescent gap of ∼40 s. We present the 10.4 m Gran Telescopio Canarias (GTC) observations of the afterglow of GRB 190829A and its underlying supernova. We also compare GRB 190829A to GRB 180728A, a GRB with similar behaviour, and discuss the implications on underlying physical mechanisms producing these two GRBs.
Methods: We present multi-band photometric data along with spectroscopic follow-up observations taken with the 10.4 m GTC telescope. Together with the data from the prompt emission, the 10.4 m GTC data are used to understand the emission mechanisms and possible progenitor.
Results: A detailed analysis of the multi-band observations of the afterglow requires the cooling frequency to pass between the optical and X-ray bands at early epochs. The afterglow then transitions to the underlying supernova (SN) 2019oyw, which dominates later on.
Conclusions: Although the prompt emission temporal properties of GRB 190829A and GRB 180728A are similar, the two pulses are different in the spectral domain. We find that SN 2019oyw associated with GRB 190829A is powered by Ni decay and is a Type Ic-BL SN. The spectroscopic and photometric properties of this SN are consistent with those observed for SN 1998bw, but evolved earlier.The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/646/A50
81 27 - Some of the metrics are blocked by yourconsent settings
Publication Open Access An 11 Earth-mass, Long-period Sub-Neptune Orbiting a Sun-like Star(2019) ;Mayo, Andrew W. ;Rajpaul, Vinesh M. ;Buchhave, Lars A. ;Dressing, Courtney D. ;Mortier, Annelies ;Zeng, Li ;Fortenbach, Charles D. ;Aigrain, Suzanne; ;Collier Cameron, Andrew ;Charbonneau, David ;Coffinet, Adrien; ; ;Dumusque, Xavier ;Martinez Fiorenzano, A. F. ;Haywood, Raphaëlle D. ;Latham, David W. ;López-Morales, Mercedes; ; ; ;Pearce, Logan ;Pepe, Francesco ;Phillips, David ;Piotto, Giampaolo; ;Rice, Ken; Udry, StephaneAlthough several thousands of exoplanets have now been detected and characterized, observational biases have led to a paucity of long-period, low-mass exoplanets with measured masses and a corresponding lag in our understanding of such planets. In this paper we report the mass estimation and characterization of the long-period exoplanet Kepler-538b. This planet orbits a Sun-like star (V = 11.27) with {M}* ={0.892}-0.035+0.051 M ☉ and {R}* ={0.8717}-0.0061+0.0064 R ☉. Kepler-538b is a {2.215}-0.034+0.040 R ⊕ sub-Neptune with a period of P = 81.73778 ± 0.00013 days. It is the only known planet in the system. We collected radial velocity (RV) observations with the High Resolution Echelle Spectrometer (HIRES) on Keck I and High Accuracy Radial velocity Planet Searcher in North hemisphere (HARPS-N) on the Telescopio Nazionale Galileo (TNG). We characterized stellar activity by a Gaussian process with a quasi-periodic kernel applied to our RV and cross-correlation function FWHM observations. By simultaneously modeling Kepler photometry, RV, and FWHM observations, we found a semi-amplitude of K={1.68}-0.38+0.39 m s-1 and a planet mass of {M}p={10.6}-2.4+2.5 M ⊕. Kepler-538b is the smallest planet beyond P = 50 days with an RV mass measurement. The planet likely consists of a significant fraction of ices (dominated by water ice), in addition to rocks/metals, and a small amount of gas. Sophisticated modeling techniques such as those used in this paper, combined with future spectrographs with ultra high-precision and stability will be vital for yielding more mass measurements in this poorly understood exoplanet regime. This in turn will improve our understanding of the relationship between planet composition and insolation flux and how the rocky to gaseous transition depends on planetary equilibrium temperature.112 34 - Some of the metrics are blocked by yourconsent settings
Publication Open Access The 11 yr of low activity of the magnetar XTE J1810-197(2019); ; ; ;Turolla, Roberto; ;Rea, Nanda; In 2003, the magnetar XTE J1810-197 started an outburst that lasted until early 2007. In the following 11 yr, the source stayed in a quiescent/low-activity phase. XTE J1810-197 is one of the closest magnetars, hence its X-ray properties can be studied in detail even in quiescence and an extended monitoring has been carried out to study its long-term timing and spectral evolution. Here, we report the results of new X-ray observations, taken between 2017 September and 2018 April, with XMM-Newton, Chandra, and NICER. We derived a phase-connected timing solution yielding a frequency derivative of -9.26(6) × 10-14 Hz s-1. This value is consistent with that measured between 2009 and 2011, indicating that the pulsar spin-down rate remained quite stable during the long quiescent period. A spectral analysis of all the X-ray observations taken between 2009 and 2018 does not reveal significant spectral and/or flux variability. The spectrum of XTE J1810-197 can be described by the sum of two thermal components with temperatures of 0.15 and 0.3 keV, plus a power-law component with photon index 0.6. We also found evidence for an absorption line at ∼1.2 keV and width of 0.1 keV. Due to the long exposure time of the summed XMM-Newton observations, we could also carry out a phase-resolved spectral analysis for this source in quiescence. This showed that the flux modulation can be mainly ascribed to the warmer of the two thermal components, whose flux varies by ∼45 per cent along the pulse phase.97 23 - Some of the metrics are blocked by yourconsent settings
Publication Open Access The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory(2017) ;Albareti, Franco D. ;Allende Prieto, Carlos ;Almeida, Andres ;Anders, Friedrich ;Anderson, Scott ;Andrews, Brett H. ;Aragón-Salamanca, Alfonso ;Argudo-Fernández, Maria ;Armengaud, Eric ;Aubourg, Eric ;Avila-Reese, Vladimir ;Badenes, Carles ;Bailey, Stephen ;Barbuy, Beatriz ;Barger, Kat ;Barrera-Ballesteros, Jorge ;Bartosz, Curtis ;Basu, Sarbani ;Bates, Dominic ;Battaglia, Giuseppina ;Baumgarten, Falk ;Baur, Julien ;Bautista, Julian ;Beers, Timothy C.; ;Bershady, Matthew ;Bertran de Lis, Sara ;Bird, Jonathan C. ;Bizyaev, Dmitry ;Blanc, Guillermo A. ;Blanton, Michael ;Blomqvist, Michael ;Bolton, Adam S. ;Borissova, J. ;Bovy, Jo ;Brandt, William Nielsen ;Brinkmann, Jonathan ;Brownstein, Joel R. ;Bundy, Kevin ;Burtin, Etienne ;Busca, Nicolás G. ;Orlando Camacho Chavez, Hugo ;Cano Díaz, M. ;Cappellari, Michele; ;Chen, Yanping ;Cherinka, Brian ;Cheung, Edmond ;Chiappini, Cristina ;Chojnowski, Drew ;Chuang, Chia-Hsun ;Chung, Haeun ;Cirolini, Rafael Fernando ;Clerc, Nicolas ;Cohen, Roger E. ;Comerford, Julia M. ;Comparat, Johan ;Correa do Nascimento, Janaina ;Cousinou, Marie-Claude ;Covey, Kevin ;Crane, Jeffrey D. ;Croft, Rupert ;Cunha, Katia ;Darling, Jeremy ;Davidson, James W., Jr. ;Dawson, Kyle ;Da Costa, Luiz ;Da Silva Ilha, Gabriele ;Deconto Machado, Alice ;Delubac, Timothée ;De Lee, Nathan ;De la Macorra, Axel ;De la Torre, Sylvain ;Diamond-Stanic, Aleksandar M. ;Donor, John ;Downes, Juan Jose ;Drory, Niv ;Du, Cheng ;Du Mas des Bourboux, Hélion ;Dwelly, Tom ;Ebelke, Garrett ;Eigenbrot, Arthur ;Eisenstein, Daniel J. ;Elsworth, Yvonne P. ;Emsellem, Eric ;Eracleous, Michael ;Escoffier, Stephanie ;Evans, Michael L. ;Falcón-Barroso, Jesús ;Fan, Xiaohui ;Favole, Ginevra ;Fernandez-Alvar, Emma ;Fernandez-Trincado, J. G. ;Feuillet, Diane ;Fleming, Scott W. ;Font-Ribera, Andreu ;Freischlad, Gordon ;Frinchaboy, Peter ;Fu, Hai ;Gao, Yang ;Garcia, Rafael A. ;Garcia-Dias, R. ;Garcia-Hernández, D. A. ;Garcia Pérez, Ana E. ;Gaulme, Patrick ;Ge, Junqiang ;Geisler, Douglas ;Gillespie, Bruce ;Gil Marin, Hector; ;Goddard, Daniel ;Gomez Maqueo Chew, Yilen ;Gonzalez-Perez, Violeta ;Grabowski, Kathleen ;Green, Paul ;Grier, Catherine J. ;Grier, Thomas ;Guo, Hong ;Guy, Julien ;Hagen, Alex ;Hall, Matt ;Harding, Paul ;Harley, R. E. ;Hasselquist, Sten ;Hawley, Suzanne ;Hayes, Christian R. ;Hearty, Fred ;Hekker, Saskia ;Hernandez Toledo, Hector ;Ho, Shirley ;Hogg, David W. ;Holley-Bockelmann, Kelly ;Holtzman, Jon A. ;Holzer, Parker H. ;Hu, Jian ;Huber, Daniel ;Hutchinson, Timothy Alan ;Hwang, Ho Seong ;Ibarra-Medel, Héctor J. ;Ivans, Inese I. ;Ivory, KeShawn ;Jaehnig, Kurt ;Jensen, Trey W. ;Johnson, Jennifer A. ;Jones, Amy ;Jullo, Eric ;Kallinger, T. ;Kinemuchi, Karen ;Kirkby, David ;Klaene, Mark ;Kneib, Jean-Paul ;Kollmeier, Juna A. ;Lacerna, Ivan ;Lane, Richard R. ;Lang, Dustin ;Laurent, Pierre ;Law, David R. ;Leauthaud, Alexie ;Le Goff, Jean-Marc ;Li, Chen ;Li, Cheng ;Li, Niu ;Li, Ran ;Liang, Fu-Heng ;Liang, Yu ;Lima, Marcos ;Lin, Lihwai ;Lin, Lin ;Lin, Yen-Ting ;Liu, Chao ;Long, Dan; ;MacDonald, Nicholas ;MacLeod, Chelsea L. ;Mackereth, J. Ted ;Mahadevan, Suvrath ;Maia, Marcio Antonio Geimba ;Maiolino, Roberto ;Majewski, Steven R. ;Malanushenko, Olena ;Malanushenko, Viktor ;Mallmann, Nícolas Dullius ;Manchado, Arturo ;Maraston, Claudia ;Marques-Chaves, Rui ;Martinez Valpuesta, Inma ;Masters, Karen L. ;Mathur, Savita ;McGreer, Ian D. ;Merloni, Andrea ;Merrifield, Michael R. ;Mészáros, Szabolcs ;Meza, Andres; ;Minchev, Ivan ;Molaverdikhani, Karan ;Montero-Dorta, Antonio D. ;Mosser, Benoit ;Muna, Demitri ;Myers, Adam ;Nair, Preethi ;Nandra, Kirpal ;Ness, Melissa ;Newman, Jeffrey A. ;Nichol, Robert C. ;Nidever, David L. ;Nitschelm, Christian ;O'Connell, Julia ;Oravetz, Audrey ;Oravetz, Daniel J. ;Pace, Zachary ;Padilla, Nelson ;Palanque-Delabrouille, Nathalie ;Pan, Kaike ;Parejko, John ;Paris, Isabelle ;Park, Changbom ;Peacock, John A. ;Peirani, Sebastien ;Pellejero-Ibanez, Marcos ;Penny, Samantha ;Percival, Will J. ;Percival, Jeffrey W. ;Perez-Fournon, Ismael ;Petitjean, Patrick ;Pieri, Matthew ;Pinsonneault, Marc H. ;Pisani, Alice ;Prada, Francisco ;Prakash, Abhishek ;Price-Jones, Natalie ;Raddick, M. Jordan ;Rahman, Mubdi ;Raichoor, Anand ;Barboza Rembold, Sandro ;Reyna, A. M. ;Rich, James ;Richstein, Hannah ;Ridl, Jethro ;Riffel, Rogemar A. ;Riffel, Rogério ;Rix, Hans-Walter ;Robin, Annie C. ;Rockosi, Constance M. ;Rodríguez-Torres, Sergio ;Rodrigues, Thaíse S. ;Roe, Natalie ;Roman Lopes, A. ;Román-Zúñiga, Carlos ;Ross, Ashley J. ;Rossi, Graziano ;Ruan, John ;Ruggeri, Rossana ;Runnoe, Jessie C. ;Salazar-Albornoz, Salvador ;Salvato, Mara ;Sanchez, Sebastian F. ;Sanchez, Ariel G. ;Sanchez-Gallego, José R. ;Santiago, Basílio Xavier ;Schiavon, Ricardo ;Schimoia, Jaderson S. ;Schlafly, Eddie ;Schlegel, David J. ;Schneider, Donald P. ;Schönrich, Ralph ;Schultheis, Mathias ;Schwope, Axel ;Seo, Hee-Jong ;Serenelli, Aldo ;Sesar, Branimir ;Shao, Zhengyi ;Shetrone, Matthew ;Shull, Michael ;Silva Aguirre, Victor ;Skrutskie, M. F. ;Slosar, Anže ;Smith, Michael ;Smith, Verne V. ;Sobeck, Jennifer ;Somers, Garrett ;Souto, Diogo ;Stark, David V. ;Stassun, Keivan G. ;Steinmetz, Matthias ;Stello, Dennis ;Storchi Bergmann, Thaisa ;Strauss, Michael A. ;Streblyanska, Alina ;Stringfellow, Guy S. ;Suarez, Genaro ;Sun, Jing ;Taghizadeh-Popp, Manuchehr ;Tang, Baitian ;Tao, Charling ;Tayar, Jamie ;Tembe, Mita ;Thomas, Daniel ;Tinker, Jeremy ;Tojeiro, Rita ;Tremonti, Christy ;Troup, Nicholas ;Trump, Jonathan R. ;Unda-Sanzana, Eduardo ;Valenzuela, O. ;Van den Bosch, Remco ;Vargas-Magaña, Mariana ;Vazquez, Jose Alberto ;Villanova, Sandro ;Vivek, M. ;Vogt, Nicole ;Wake, David ;Walterbos, Rene ;Wang, Yuting ;Wang, Enci ;Weaver, Benjamin Alan ;Weijmans, Anne-Marie ;Weinberg, David H. ;Westfall, Kyle B. ;Whelan, David G. ;Wilcots, Eric ;Wild, Vivienne ;Williams, Rob A. ;Wilson, John ;Wood-Vasey, W. M. ;Wylezalek, Dominika ;Xiao, Ting ;Yan, Renbin ;Yang, Meng ;Ybarra, Jason E. ;Yeche, Christophe ;Yuan, Fang-Ting ;Zakamska, Nadia ;Zamora, Olga ;Zasowski, Gail ;Zhang, Kai ;Zhao, Cheng ;Zhao, Gong-Bo ;Zheng, Zheng ;Zhou, Zhi-Min ;Zhu, Guangtun ;Zinn, Joel C.Zou, HuThe fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in 2014 July. It pursues three core programs: the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2), Mapping Nearby Galaxies at APO (MaNGA), and the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). As well as its core program, eBOSS contains two major subprograms: the Time Domain Spectroscopic Survey (TDSS) and the SPectroscopic IDentification of ERosita Sources (SPIDERS). This paper describes the first data release from SDSS-IV, Data Release 13 (DR13). DR13 makes publicly available the first 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA. It includes new observations from eBOSS, completing the Sloan Extended QUasar, Emission-line galaxy, Luminous red galaxy Survey (SEQUELS), which also targeted variability-selected objects and X-ray-selected objects. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification, and new reductions of the SDSS-III APOGEE-1 data, improving stellar parameters for dwarf stars and cooler stars. DR13 provides more robust and precise photometric calibrations. Value-added target catalogs relevant for eBOSS, TDSS, and SPIDERS and an updated red-clump catalog for APOGEE are also available. This paper describes the location and format of the data and provides references to important technical papers. The SDSS web site, http://www.sdss.org, provides links to the data, tutorials, examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ∼6 yr operations of SDSS-IV.105 42 - Some of the metrics are blocked by yourconsent settings
Publication Open Access 1D Kinematics from Stars and Ionized Gas at z ∼ 0.8 from the LEGA-C Spectroscopic Survey of Massive Galaxies(2018) ;Bezanson, Rachel; ;Straatman, Caroline ;Pacifici, Camilla ;Wu, Po-Feng ;Barišić, Ivana ;Bell, Eric F. ;Conroy, Charlie ;D'Eugenio, Francesco ;Franx, Marijn; ;van Houdt, Josha ;Maseda, Michael V. ;Muzzin, Adam ;van de Sande, Jesse ;Sobral, DavidSpilker, JustinWe present a comparison of the observed, spatially integrated stellar and ionized gas velocity dispersions of ∼1000 massive ({log} {M}\star /{M}☉ ≳ 10.3) galaxies in the Large Early Galaxy Astrophysics Census survey at 0.6 ≲ z ≲ 1.0. The high S/N ∼ 20 Å-1 afforded by 20 hr Very Large Telescope/Visible Multi-Object Spectrograph spectra allows for joint modeling of the stellar continuum and emission lines in all galaxies, spanning the full range of galaxy colors and morphologies. These observed integrated velocity dispersions (denoted as {σ }g,{int}{\prime } and {σ }\star ,{int}{\prime }) are related to the intrinsic velocity dispersions of ionized gas or stars, but also include rotational motions through beam smearing and spectral extraction. We find good average agreement between observed velocity dispersions, with < {log}({σ }g,{int}{\prime }/{σ }\star ,{int}{\prime })> =-0.003. This result does not depend strongly on stellar population, structural properties, or alignment with respect to the slit. However, in all regimes we find significant scatter between {σ }g,{int}{\prime } and {σ }\star ,{int}{\prime }, with an overall scatter of 0.13 dex of which 0.05 dex is due to observational uncertainties. For an individual galaxy, the scatter between {σ }g,{int}{\prime } and {σ }\star ,{int}{\prime } translates to an additional uncertainty of ∼0.24 dex on dynamical mass derived from {σ }g,{int}{\prime }, on top of measurement errors and uncertainties from Virial constant or size estimates. We measure the z ∼ 0.8 stellar mass Faber-Jackson relation and demonstrate that emission line widths can be used to measure scaling relations. However, these relations will exhibit increased scatter and slopes that are artificially steepened by selecting on subsets of galaxies with progressively brighter emission lines.75 16 - Some of the metrics are blocked by yourconsent settings
Publication Open Access 2 years with comet 67P/Churyumov-Gerasimenko: H2O, CO2, CO as seen by ROSINA RTOF(2017) ;Hoang, M. ;Garnier, P. ;Lasue, J. ;Reme, H. ;Altwegg, K. ;Balsiger, H. R. ;Bieler, A. M. ;Calmonte, U.; ;Combi, M. R. ;De Keyser, J. M. ;Fiethe, B. ;Fougere, N. ;Fuselier, S. A. ;Galli, A. ;Gasc, S. ;Gombosi, T. I. ;Hansen, K. C. ;Jäckel, A. ;Korth, A. ;Mall, U.; ;Rubin, M. ;Sémon, T. ;Tzou, C. Y. ;Waite, J. H., Jr.Wurz, P.The Rosetta space mission investigated comet 67P/Churyumov-Gerasimenko (67P) over two years from August 2014 to September 2016. Onboard the spacecraft, the ROSINA experiment included two mass spectrometers to derive the composition of neutrals and ions, and a COmet Pressure Sensor (COPS) to monitor the density and velocity of the neutrals in the coma. We will here analyse and discuss data from the Reflectron-type Time-Of-Flight instrument during the comet escort phase. The RTOF mass spectrometer possessed a wide mass range and a high temporal resolution (Balsiger et al., 2007). The analysis of 67P/C-G's coma major molecules over the mission showed strong variability of the comet coma's main volatiles concentrations (H2O, CO2, CO) and their relative abundances. The 2 years long Rosetta mission allowed us to observe the seasonal evolution in the atmosphere of 67P, in particular the change occurring during the equinoxes and at perihelion. In this work, we analyze the asymmetry in the outgassing rate before and after the perihelion (13/08/2015), the evolution of abundance ratios through the whole mission, and in particular the behavior of the very volatile CO molecules. Density maps projected on the surface of 67P demonstrate the evolution of the three main coma species after the outbound equinox. We will present first results of our comet nucleus thermal modelling used to simulate the internal structure and temperature evolution of 67P at characteristic surface areas. These results will be compared with the coma composition measurements obtained by ROSINA....134 18 - Some of the metrics are blocked by yourconsent settings
Publication Open Access The 2-10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys(2016) ;Ranalli, P. ;Koulouridis, E. ;Georgantopoulos, I. ;Fotopoulou, S. ;Hsu, L. -T. ;Salvato, M.; ;Pierre, M. ;Cappelluti, N. ;Carrera, F. J.; ;Clerc, N.; ;Iwasawa, K. ;Pacaud, F. ;Paltani, S. ;Plionis, E.Vignali, C.The XMM-Large scale structure (XMM-LSS), XMM-Cosmological evolution survey (XMM-COSMOS), and XMM-Chandra deep field south (XMM-CDFS) surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and point spread function. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of active galactic nuclei (AGN) and their evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 1042-1046 erg s-1 and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, which is improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power law with luminosity and density evolution (LADE) or luminosity-dependent density evolution (LDDE), are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the recently proposed 15-parameter extended LDDE model and find that this extension is not supported by our data. The strength of our method is that it provides unabsorbed, non-parametric estimates, credible intervals for luminosity function parameters, and a model choice based on predictive power for future data.Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.Tables with the samples of the posterior probability distributions are only available at the CDS via anonymous ftp to "http://cdsarc.u-strasbg.fr" or via "http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A80"
619 35 - Some of the metrics are blocked by yourconsent settings
Publication Open Access A 2.3-8.2 GHz room temperature multi-channel receiver for phased array feed applicationWe describe the design, fabrication and test results of a multi-channel heterodyne receiver operating at room temperature across the 2.3-8.2 GHz Radio Frequency (RF) band. Such a “Warm Section” (WS) receiver is part of a Phased Array Feed (PAF) demonstrator that is being built for radio astronomy application. The WS receiver is cascaded to the PAF cryogenic section that incorporates an antenna array with low noise pre-amplification stages. The WS receiver consists of four rack-mountable modules, each of which can process eight RF inputs. Four modules are arranged in a standard 19” rack to allow handling a total of 32 RF signals. The modules perform filtering (through four-way switch filter bank) and down-conversion (to the 375-650 MHz IF band). The IF signals are converted to optical through analogue Wavelength Division Multiplexing IFoF (IF over fiber) transmitters incorporated into the WS receiver. The signals are sent through optical fibers to a backend, where they are converted back to IF before digitization by an Analog-to-Digital Unit.114 22 - Some of the metrics are blocked by yourconsent settings
Publication Open Access A 20-year H2O maser monitoring program with the Medicina 32-m telescope(Cambridge University Press., 2007); ;Felli, M.; ; ; ;Di Franco, S.; ; ; ; ;Palagi, F. ;Palla, F.; Valdettaro, R.The Arcetri/Bologna H2O maser group has been monitoring the 1.3-cm water maser emission from a sample of 43 star-forming regions (SFRs) and 22 late-type stars for about 20 years at a sampling rate of 4-5 observations each year, using the 32-m Medicina Radio Telescope (HPBW 1.‧9 at 22 GHz). For the late-type stars we observe representative samples of OH/IR-stars, Mira's, semi-regular variables, and supergiants. The SFR-sample spans a large interval in FIR luminosity of the associated Young Stellar Object (YSO), from 20 L to 1.5 × 106 L, and offers a unique data base for the study of the long-term (years) variability of the maser emission in regions of star formation.This presentation concerns only the masers in SFRs. The information obtained from single-dish monitoring is complementary to what is extracted from higher-resolution (VLA and VLBI) observations, and can better explore the velocity domain and the long-term variability therein.
We characterize the variability of the sources in various ways and we study how it depends on the luminosity and other properties of the associated YSO and its environment.
72 18 - Some of the metrics are blocked by yourconsent settings
Publication Open Access The 2009 december gamma-ray flare of 3C 454.3: The multifrequency campaign(2010); ; ; ; ; ; ;Sakamoto, T.; ; ; ;Sasada, M. ;Itoh, R. ;Yamanaka, M. ;Uemura, M. ;Striani, E.; ;Tiengo, A. ;Krimm, H.A. ;Stroh, M.C. ;Falcone, A.D. ;Curran, P.A. ;Sadun, A.C. ;Lahteenmaki, A. ;Tornikoski, M. ;Aller, H.D. ;Aller, M.F. ;Lin, C.S. ;Larionov, V.M.; ;Takalo, L.O. ;Berdyugin, A. ;Gurwell, M.A.; ;Chen, A.W. ;Donnarumma, I.; ;Longo, F. ;Pucella, G.; ;Barbiellini, G.; ;Cattaneo, P.W.; ; ;Monte, E.D. ;Cocco, G.D.; ;Ferrari, A.; ; ; ;Galli, M.; ; ;Lapshov, I.; ;Lipari, P.; ; ;Morelli, E. ;Moretti, E. ;Morselli, A.; ;Perotti, F.; ;Picozza, P.; ;Prest, M. ;Rapisarda, M. ;Rappoldi, A. ;Rubini, A. ;Sabatini, S.; ; ; ;Vallazza, E. ;Zanello, D. ;Colafrancesco, S.; ; ;Santolamazza, P.; ;Giommi, P.Salotti, L.During the month of 2009 December, the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F 2000 × 10 -8 photons cm-2 s-1 for E > 100 MeV. Starting in 2009 November intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here, we report on the results of a two-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, and Rossi XTE for the high-energy observations and Swift/UVOT, KANATA, Goddard Robotic Telescope, and REM for the near-IR/optical/UV data. GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting 1 month at all wavelengths: in the gamma-ray band, peak emission was reached on 2009 December 2-3. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broadband spectral evolution severely constrain the theoretical modeling. We find that the pre- and post-flare broadband behavior can be explained by a one-zone model involving synchrotron self-Compton plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the 2009 December 2-3 super-flare and of the secondary peak emission on 2009 December 9 cannot be satisfactorily modeled by a simple one-zone model. An additional particle component is most likely active during these states. © 2010. The American Astronomical Society. All rights reserved.61 24 - Some of the metrics are blocked by yourconsent settings
Publication Open Access The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study(2016) ;Grün, E. ;Agarwal, J. ;Altobelli, N. ;Altwegg, K. ;Bentley, M. S. ;Biver, N.; ;Edberg, N. ;Feldman, P. D. ;Galand, M. ;Geiger, B. ;Götz, C. ;Grieger, B. ;Güttler, C. ;Henri, P. ;Hofstadter, M. ;Horanyi, M. ;Jehin, E. ;Krüger, H. ;Lee, S. ;Mannel, T. ;Morales, E. ;Mousis, O. ;Müller, M. ;Opitom, C.; ;Schmied, R. ;Schmidt, F. ;Sierks, H. ;Snodgrass, C. ;Soja, R. H. ;Sommer, M. ;Srama, R. ;Tzou, C. -Y. ;Vincent, J. -B. ;Yanamandra-Fisher, P. ;A'Hearn, M. F. ;Erikson, A. I. ;Barbieri, C. ;Barucci, M. A. ;Bertaux, J. -L. ;Bertini, I. ;Burch, J.; ; ;Da Deppo, V. ;Davidsson, B. ;Debei, S. ;De Cecco, M. ;Deller, J. ;Feaga, L. M.; ;Fornasier, S.; ;Gicquel, A. ;Gillon, M. ;Green, S. F. ;Groussin, O. ;Gutiérrez, P. J. ;Hofmann, M. ;Hviid, S. F. ;Ip, W. -H.; ;Jorda, L. ;Keller, H. U. ;Knight, M. M. ;Knollenberg, J. ;Koschny, D. ;Kramm, J. -R. ;Kührt, E. ;Küppers, M. ;Lamy, P. L. ;Lara, L. M. ;Lazzarin, M. ;Lòpez-Moreno, J. J. ;Manfroid, J. ;Epifani, E. Mazzotta ;Marzari, F. ;Naletto, G. ;Oklay, N.; ;Parker, J. Wm. ;Rickman, H. ;Rodrigo, R. ;Rodrìguez, J. ;Schindhelm, E. ;Shi, X.; ;Steffl, A. J. ;Stern, S. A. ;Thomas, N. ;Tubiana, C. ;Weaver, H. A. ;Weissman, P. ;Zakharov, V. V.Taylor, M. G. G. T.On 2016 Feb 19, nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in situ gas, dust and plasma instruments, and one dust collector. At 09:40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50 per cent of the neutral gas density at Rosetta to factors >100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors >10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from ∼-16 V to -20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta (34 km from the nucleus): within 15 min the Star Tracker camera detected fast particles (∼25 m s-1) while 100 μm radius particles were detected by the GIADA dust instrument ∼1 h later at a speed of 6 m s-1. The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.119 137 - Some of the metrics are blocked by yourconsent settings
Publication Open Access A 21-cm power spectrum at 48 MHz, using the Owens Valley Long Wavelength Array(2021) ;Garsden, H. ;Greenhill, L.; ;Fialkov, A. ;Price, D. C. ;Mitchell, D. ;Dowell, J.; Schinzel, F. K.The Large-aperture Experiment to detect the Dark Age (LEDA) was designed to measure the 21-cm signal from neutral hydrogen at Cosmic Dawn, z ≍ 15-30. Using observations made with the ≍ 200 m diameter core of the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA), we present a 2D cylindrical spatial power spectrum for data at 43.1-53.5 MHz (zmedian ≍ 28) incoherently integrated for 4 h, and an analysis of the array sensitivity. Power from foregrounds is localized to a 'wedge' within k⊥, $k_\parallel$ space. After calibration of visibilities using five bright compact sources including Vir A, we measure Δ2(k) ≍ 2 × 1012 mK2 outside the foreground wedge, where an uncontaminated cosmological signal would lie, in principle. The measured Δ2(k) is an upper limit that reflects a combination of thermal instrumental and sky noise, and unmodelled systematics that scatter power from the wedge, as will be discussed. By differencing calibrated visibilities for close pairs of frequency channels, we suppress foreground sky structure and systematics, extract thermal noise, and use a mix of coherent and incoherent integration to simulate a noise-dominated power spectrum for a 3000 h observation and z = 16-37. For suitable calibration quality, the resulting noise level, Δ2(k) ≍ 100 mK2 (k = 0.3 Mpc-1), would be sufficient to detect peaks in the 21-cm spatial power spectrum due to early Ly-α and X-ray sources, as predicted for a range of theoretical model parameters.55 41 - Some of the metrics are blocked by yourconsent settings
Publication Open Access 2PBC J0658.0-1746: a hard X-ray eclipsing polar in the orbital period gap(2019); ; ;Mukai, K. ;Falanga, M.The hard X-ray source 2PBC J0658.0-1746 was proposed as an eclipsing magnetic cataclysmic variable of the polar type, based on optical follow-ups. We present the first spectral and timing analysis at X-ray energies with XMM-Newton, complemented with archival X-ray, optical, infrared (IR) photometry, and spectroscopy. The X-ray emission shows bright and faint phases and total eclipses recurring every 2.38 h, consistent with optical properties. This firmly identifies 2PBC J0658.0-1746 as an eclipsing polar, the second hard X-ray selected in the orbital period gap. The X-ray orbital modulation changes from cycle-to-cycle and the X-ray flux is strongly variable over the years, implying a non-stationary mass accretion rate both on short and long time-scales. The X-ray eclipses allow to refine the orbital ephemeris with period 0.09913398(4) d, and to constrain the binary inclination 79^{circ}≲ i ≲ 90^{circ} and the mass ratio 0.18< M_2/M_{ WD}< 0.40. A companion mass M2=0.2-0.25 M_{\odot } with a radius R2=0.24-0.26 R_{\odot } and spectral type ∼M4, at D=209^{+3}_{-2} pc, is derived. A lower limit to the white dwarf mass of ∼ 0.6 M_{\odot } is obtained from the X-ray spectrum. An upper limit to the magnetic colatitude, β ≲ 50^{circ}, and a shift in azimuth, ψ ∼ 14^{circ}, of the main accreting pole are also estimated. The optical/IR spectral energy distribution shows large excess in the mid-IR due to lower harmonics of cyclotron emission. A high-state mass accretion rate ∼ 0.4-1× 10^{-10} M_{\odot } yr^{-1}, lower than that of cataclysmic variables above the gap and close to that of systems below it, is estimated. With 2PBC J0658.0-1746, the number of hard X-ray-selected polars increases to 13 members, suggesting that they are not as rare as previously believed.114 26 - Some of the metrics are blocked by yourconsent settings
Publication Open Access A 3.9 km baseline intensity interferometry photon counting experiment(SPIE, The International Society for Optical Engineering, 2016); ; ;Barbieri, Cesare ;Barbieri, Mauro ;Verroi, Enrico; ;Favazza, Paolo; In the last years we have operated two very similar ultrafast photon counting photometers (Iqueye and Aqueye+) on different telescopes. The absolute time accuracy in time tagging the detected photon with these instruments is of the order of 500 ps for hours of observation, allowing us to obtain, for example, the most accurate ever light curve in visible light of the optical pulsars. Recently we adapted the two photometers for working together on two telescopes at Asiago (Italy), for realizing an Hanbury-Brown and Twiss Intensity Interferometry like experiment with two 3.9 km distant telescopes. In this paper we report about the status of the activity and on the very preliminary results of our first attempt to measure the photon intensity correlation.18 8 - Some of the metrics are blocked by yourconsent settings
Publication Open Access The 3rd AGILE Terrestrial Gamma Ray Flash Catalog. Part I: Association to Lightning Sferics(2020) ;Lindanger, A.; ;Maiorana, C. ;Sarria, D. ;Albrechtsen, K. ;Østgaard, N. ;Galli, M.; ; ; ; We present a complete and systematic search for terrestrial gamma-ray flashes (TGFs), detected by AGILE, that are associated with radio sferics detected by the World Wide Lightning Location Network (WWLLN) in the period February 2009 to September 2018. The search algorithms and characteristics of these new TGFs will be presented and discussed. The number of WWLLN identified (WI) TGFs shows that previous TGF selection criteria needs to be reviewed as they do not identify all the WI TGFs in the data set. In this analysis we confirm with an independent data set that WI TGFs tend to have shorter time duration than TGFs without a WWLLN match. TGFs occurs more often on coastal and ocean regions compared to the distribution of lightning activity. Several multipulse TGFs were identified and their WWLLN match are always associated with the last gamma-ray pulse. We also present the first Terrestrial Electron Beam detected by AGILE. This data set together with the TGF sample identified by selection criteria (companion paper Maiorana et al., 2020) constitute the 3rd AGILE TGF catalog.17 5 - Some of the metrics are blocked by yourconsent settings
Publication Open Access The 3rd AGILE Terrestrial Gamma‐ray Flashes Catalog. Part II: Optimized Selection Criteria and Characteristics of the New Sample(2020) ;Maiorana, C.; ;Lindanger, A. ;Østgaard, N.; ;Sarria, D. ;Galli, M.; ; ; We present in this work the third catalog of terrestrial gamma-ray flashes (TGFs) by the AGILE mission and the new search algorithm that was developed to produce it. We firstly introduce the new selection criteria, designed from the characteristics of WWLLN-identified TGFs, and then applied on all data from March 2015 to September 2018. Association with sferics was performed by an independent search, described in a companion paper by Lindanger et al. (2020, https://doi.org/10.1029/2019JD031985). This search showed that many TGFs were not recognized by the existing selection algorithm, hence the need for this work. Several new selection criteria were tested and are compared in this paper. We then present the chosen selection criteria and the obtained sample, which includes 2,780 events and represents the most extensive TGF catalog available for the equatorial regions. Finally, we discuss the characteristics of this sample, including geographic distribution, intensity and duration, and seasonal variations.13 5 - Some of the metrics are blocked by yourconsent settings
Publication Open Access 6.7 GHz Methanol Masers Associated with Jets in Very Early High Mass Protostars(2015) ;Rosero, Viviana; ;Claussen, Mark J. ;Kurtz, Stan; 6.7 GHz (or class II) methanol masers have been detected exclusively toward high mass star forming regions and may be a tracer of an accretion disk around a highly embedded high mass protostar. Several studies have shown a lack of radio continuum associated with methanol maser emission, which could indicate that these masers are related to the earliest stages of high mass star formation. We recently performed a large, high sensitive (~3-10 uJy) Karl G. Jansky Very Large Array (VLA) survey to search for radio continuum emission from a sample of hot molecular cores and infrared dark cloud cores, previously undetected in the radio continuum at 1 mJy sensitivity. The morphology and spectrum of most of our radio detections are consistent with being ionized jets. As models of star formation predict that jets are collimated by accretion disks, we have selected 6 prominent examples of ionized jet candidates to study the behavior of the masers with respect to the jet and to understand the role that both disks and jets play in the process of high mass star formation. Using the VLA, we performed simultaneous observations of the radio continuum and the 6.7 GHz methanol maser, obtaining accurate relative positions between them. From the accuracy of our observations, we found that all the methanol masers detected are associated with the radio continuum from the jet. Furthermore, for some sources the maser spots show a linear distribution with a velocity gradient nearly perpendicular to the ionized jet, a further indication of emission from an accretion disk.164 24 - Some of the metrics are blocked by yourconsent settings
Publication Open Access 67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun(2016); ; ; ; ;Green, S. F. ;Rietmeijer, F. J. M.; ; ; ; ;Accolla, M.; ; ;Weissman, P. ;Gruen, E. ;Lopez-Moreno, J. J. ;Rodriguez, J. ;Bussoletti, E. ;Crifo, J. F.; ;Lamy, P. L. ;McDonnell, J. A. M.; ;Molina, A. ;Morales, R. ;Moreno, F.; ;Perrin, J. M. ;Rodrigo, R. ;Zarnecki, J. C. ;Cosi, M. ;Giovane, F. ;Gustafson, B. ;Ortiz, J. L. ;Jeronimo, J. M. ;Leese, M. R. ;Herranz, M. ;Liuzzi, V.Lopez-Jimenez, A. C.GIADA (Grain Impact Analyzer and Dust Accumulator) on-board the Rosetta space probe is designed to measure the momentum, mass and speed of individual dust particles escaping the nucleus of comet 67P/Churyumov-Gerasimenko (hereafter 67P). From 2014 August to 2016 June, Rosetta escorted comet 67P during its journey around the Sun. Here, we focus on GIADA data taken between 2015 January and 2016 February which included 67P's perihelion passage. To better understand cometary activity and more specifically the presence of dust structures in cometary comae, we mapped the spatial distribution of dust density in 67P's coma. In this manner, we could track the evolution of high-density regions of coma dust and their connections with nucleus illumination conditions, namely tracking 67P's seasons. We also studied the link between dust particle speeds and their masses with respect to heliocentric distance, I.e. the level of cometary activity. This allowed us to derive a global and a local correlation of the dust particles' speed distribution with respect to the H2O production rate.129 27