(1) Ceres: Study of Thermal Convection in the Mantle and its Mechanical Effects
Date Issued
2018
Author(s)
Abstract
Ceres is the largest body of the Main Belt, which is characterized by a huge abundance of water ice in its interior. This feature is suggested by its relatively low bulk density (2162 kg m-3, Russell et al. 2016, Park et al. 2016) and by several geological and geochemical evidences (specific minerals or salts produced by acqueous alteration, icy patches on the surface, lobate morphologies interpretable as surface flows (De Sanctis et al. 2016, Carrozzo et al. 2018, Raponi et al. 2018, Zolotov 2017 and Schmidt et al., 2017).Ceres is partially differentiated as suggested by its normalized moment of inertia, 0.37 (Park et al. 2016). A typical internal structure proposed for Ceres is: a rocky core (300-350 km), an icy (or muddy) mantle (100-150 km) and a rocky crust some kilometers in depth (eg. Mc Cord & Sotin 2005, Neveu & Desch, 2015). The temperature gradient across the mantle, estimated through numerical modelling (e.g. McCord & Sotin 2005, Neveu & Desch 2015) would be large enough to initiate a thermal convection in the mantle. Since the mantle is not uniquely defined from a composition point of view, in this work we explore how the composition and, in particular the "degree" of muddiness of the mantle, can influence the characteristic of thermal convection. We also estimate the thickness of the top conductive boundary layer and the mechanical stress, which can cause its deformation. - De Sanctis, M., et al. (2015) doi:10.1038/nature16172.- Russell, C., et al. (2016), doi:10.1126/science.aaf4219.- Park, R., et al. (2016),Lunar and Planetary Science Conference, vol. 47, p. 1781.- Schmidt, B. E., et al. (2017), doi:doi:10.1038/ngeo2936- Zolotov, M. Y. (2017), doi:https://doi.org/10.1016 j.icarus.2017.06.018.- Carrozzo, F., et al. (2018), Nature, formation and distribution of carbonates on ceres, Science Advances.- Raponi, A., et al. (2018), Variations in the amount of water ice on ceres' surface suggest a seasonal water cycle, Science Advances.- McCord, T., and C. Sotin (2005), doi:10.1029/2004JE002244.- Neveu, M., and S. Desch (2015), Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle, Geophys. Res. Lett.
Coverage
42nd COSPAR Scientific Assembly
Start page
B1.1-20-18
Conferenece
42nd COSPAR Scientific Assembly
Conferenece place
Pasadena, CA, USA
Conferenece date
14-22 July, 2018
File(s)
Loading...
Name
COSPAR 2018.pdf
Description
preprint
Size
19.07 KB
Format
Adobe PDF
Checksum (MD5)
bb27df93350457e1740732e1695965c5
Loading...
Name
B1.1-0020-18-oral.pdf
Description
Pdf editoriale
Size
54.68 KB
Format
Adobe PDF
Checksum (MD5)
7141e2203721154f8d1ee43386db5a9f