Browsing by Type "eprint"
Now showing 1 - 20 of 100
- Results Per Page
- Sort Options
- Some of the metrics are blocked by yourconsent settings
Product Metadata only A New Broadband Spectral State in the Ultraluminous X-ray Source Holmberg IX X-1(2024) ;Walton, D. J.; ;Kosec, P. ;Furst, F. ;Pinto, C. ;Roberts, T. P. ;Soria, R. ;Stern, D. ;Alston, W. N. ;Brightman, M. ;Earnshaw, H. P. ;Fabian, A. C. ;Harrison, F. A. ;Middleton, M. J.Sathyaprakash, R.We present a series of five new broadband X-ray observations of the ultraluminous X-ray source Holmberg IX X-1, performed by $XMM$-$Newton$ and $NuSTAR$ in coordination. The first three of these show high soft X-ray fluxes but a near total collapse of the high-energy ($\gtrsim$15 keV) emission, previously seen to be surprisingly stable across all prior broadband observations of the source. The latter two show a recovery in hard X-rays, remarkably once again respecting the same stable high-energy flux exhibited by all of the archival observations. We also present a joint analysis of all broadband observations of Holmberg IX X-1 to date (encompassing 11 epochs in total) in order to investigate whether it shows the same luminosity-temperature behaviour as NGC 1313 X-1 (which also shows a stable high-energy flux), whereby the hotter disc component in the spectrum exhibits two distinct, positively-correlated tracks in the luminosity-temperature plane. Holmberg IX X-1 may show similar behaviour, but the results depend on whether the highest energy emission is assumed to be an up-scattering corona or an accretion column. The strongest evidence for this behaviour is found in the former case, while in the latter the new 'soft' epochs appear distinct from the other high-flux epochs. We discuss possible explanations for these new 'soft' spectra in the context of the expected structure of super-Eddington accretion flows around black holes and neutron stars, and highlight a potentially interesting analogy with the recent destruction and re-creation of the corona seen in the AGN 1ES 1927+654. - Some of the metrics are blocked by yourconsent settings
Product Metadata only APOKASC-3: The Third Joint Spectroscopic and Asteroseismic catalog for Evolved Stars in the Kepler Fields(2024) ;Pinsonneault, Marc H. ;Zinn, Joel C. ;Tayar, Jamie ;Serenelli, Aldo ;Garcia, Rafael A. ;Mathur, Savita ;Vrard, Mathieu ;Elsworth, Yvonne P. ;Mosser, Benoit ;Stello, Dennis ;Bell, Keaton J. ;Bugnet, Lisa; ;Gaulme, Patrick ;Hekker, Saskia ;Hon, Marc ;Huber, Daniel ;Kallinger, Thomas ;Cao, Kaili ;Johnson, Jennifer A. ;Liagre, Bastien ;Patton, Rachel A. ;Santos, Angela R. G. ;Basu, Sarbani ;Beck, Paul G. ;Beers, Timothy C. ;Chaplin, William J. ;Cunha, Katia ;Frinchaboy, Peter M.; ;Godoy-Rivera, Diego ;Holtzman, Jon A. ;Jonsson, Henrik ;Meszaros, Szabolcs ;Reyes, Claudia ;Rix, Hans-Walter ;Shetrone, Matthew ;Smith, Verne V. ;Spoo, Taylor ;Stassun, Keivan G.Wang, JiIn the third APOKASC catalog, we present data for the complete sample of 15,808 evolved stars with APOGEE spectroscopic parameters and Kepler asteroseismology. We used ten independent asteroseismic analysis techniques and anchor our system on fundamental radii derived from Gaia $L$ and spectroscopic $T_{\rm eff}$. We provide evolutionary state, asteroseismic surface gravity, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them for 12,418 stars. This includes 10,036 exceptionally precise measurements, with median fractional uncertainties in \nmax, \dnu, mass, radius and age of 0.6\%, 0.6\%, 3.8\%, 1.8\%, and 11.1\% respectively. We provide more limited data for 1,624 additional stars which either have lower quality data or are outside of our primary calibration domain. Using lower red giant branch (RGB) stars, we find a median age for the chemical thick disk of $9.14 \pm 0.05 ({\rm ran}) \pm 0.9 ({\rm sys})$ Gyr with an age dispersion of 1.1 Gyr, consistent with our error model. We calibrate our red clump (RC) mass loss to derive an age consistent with the lower RGB and provide asymptotic GB and RGB ages for luminous stars. We also find a sharp upper age boundary in the chemical thin disk. We find that scaling relations are precise and accurate on the lower RGB and RC, but they become more model dependent for more luminous giants and break down at the tip of the RGB. We recommend the usage of multiple methods, calibration to a fundamental scale, and the usage of stellar models to interpret frequency spacings. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Astrochemistry on Galactic scales(2024) ;Colzi, L. ;Rivilla, V. M.; ;Law, C. Y. ;Redaelli, E.The increasing number of observations towards different environments in the Milky Way, as well as theoretical and experimental works, are improving our knowledge of the astrochemical processes in the interstellar medium (ISM). In this chapter we report some of the main projects to study the chemical complexity and isotopic ratios across the Galaxy. High-sensitivity spectral surveys covering broad bandwidths towards Galactic Center molecular clouds (e.g. G+0.693-0.027) and star-forming regions (e.g. the hot core G31.41+0.31) are revealing very rich astrochemical reservoirs, which include molecules of prebiotic interest. At the same time, isotopic ratios (e.g. $^{12}$C/$^{13}$C and $^{14}$N/$^{15}$N) can give important information on the Galactic chemical evolution, as well as on chemical local processes due to the physical conditions of the molecular clouds. We also highlight the role of cosmic rays as a key agent affecting the interstellar chemistry described above. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Astrochemistry on Galactic scales(2024) ;Colzi, L. ;Rivilla, V. M.; ;Law, C. Y. ;Redaelli, E.The increasing number of observations towards different environments in the Milky Way, as well as theoretical and experimental works, are improving our knowledge of the astrochemical processes in the interstellar medium (ISM). In this chapter we report some of the main projects to study the chemical complexity and isotopic ratios across the Galaxy. High-sensitivity spectral surveys covering broad bandwidths towards Galactic Center molecular clouds (e.g. G+0.693-0.027) and star-forming regions (e.g. the hot core G31.41+0.31) are revealing very rich astrochemical reservoirs, which include molecules of prebiotic interest. At the same time, isotopic ratios (e.g. $^{12}$C/$^{13}$C and $^{14}$N/$^{15}$N) can give important information on the Galactic chemical evolution, as well as on chemical local processes due to the physical conditions of the molecular clouds. We also highlight the role of cosmic rays as a key agent affecting the interstellar chemistry described above. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Average energy of the X-ray spectrum as a model-independent proxy for the mass of galaxy clusters(2024) ;Kruglov, A. ;Khabibullin, I. ;Lyskova, N. ;Dolag, K.Biffi, V.Temperature of the hot gas in galaxy clusters is known to be a reliable proxy for the their total gravitating mass, allowing one to use spectroscopic X-ray observations for halo mass function measurements. Data of shallow wide area surveys, however, often precludes direct fitting of the X-ray spectra, given possible biases arising due to unresolved (multitemperature) inner structure of the intracluster medium (ICM), projection effects and necessity of certain model assumptions to be made to allow for robust spectral fitting. We consider using a simple observable value - the average energy of the observed cluster X-ray spectrum - as a model-independent proxy for the ICM temperature, and consequently cluster's mass. We calibrate relation of this proxy to the cluster parameters using mock obsesrvations for a sample of 84 massive galaxy clusters extracted from the Magneticum cosmological hydro simulations. We consider observational parameters corresponding to the all-sky survey observations by SRG/eROSITA. Taking into account contributions of various background and foreground signals, average energy of the simulated X-ray spectra in the $0.4-7.0$ keV band is shown to be a stable indicator of the ICM temperature with $\sim10\%$ scatter and cluster's mass $M_{500}$ with a $\sim 20\%$ scatter. A database containing simulated X-ray images and their spectra (subtracted in several concentric rings) is publicly available. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Characterisation of local halo building blocks: Thamnos and Sequoia(2024) ;Dodd, Emma ;Ruiz-Lara, Tomás ;Helmi, Amina ;Gallart, Carme ;Callingham, Thomas M.; ;Fernández-Alvar, EmmaSurot, FransiscoA crucial aspect of galaxy evolution is the pace at which galaxies build up their mass. We can investigate this hierarchical assembly by uncovering and timing accretion events that our galaxy has experienced. In the Milky Way, accreted debris has been previously identified in the local halo, thanks to the advent of Gaia data. We aim to couple this dataset with advancements in colour-magnitude diagram fitting techniques to characterise the building blocks of the Galaxy. Here we focus on the retrograde halo, specifically Thamnos and Sequoia. We do this as part of the ChronoGal project by fitting absolute colour-magnitude diagrams (using CMDft.Gaia) of samples of stars associated with these substructures, extracted from a local 5D Gaia DR3 dataset. Comparing their derived age and metallicity distributions with those of the expected contamination, from the dominant Gaia Enceladus and low energy in-situ populations, we can unveil the stellar population signatures of the progenitors of Sequoia and Thamnos. We show that both Thamnos and Sequoia have a metal-poor population ([Fe/H]<-1.5 dex) that is distinct from the expected contamination. The age distributions allow us to see that Sequoia formed half of its stars by a lookback time of 12 Gyr, while Thamnos is on average older, having formed half its stars at 12.3 Gyr. Gaia Enceladus and the low energy in-situ populations formed half of their stars by 12.1 Gyr and 12.9 Gyr respectively. This suggests that Thamnos was accreted earlier than Gaia Enceladus and Sequoia is the most recent accretion event. We have presented, for the first time, age distributions of the retrograde halo substructures: Sequoia and Thamnos. These are derived purely photometrically using CMD fitting techniques, which also provide metallicity distributions that successfully reproduce the spectroscopic distributions, highlighting the capability of CMDft.Gaia. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Design and development of the HERMES Pathfinder payloads(2024); ; ; ;Guzman, A. ;Baroni, G. ;Della Casa, G. ;Dilillo, G. ;Hedderman, P. ;Marchesini, E. J. ;Bertuccio, G. ;Ceraudo, F. ;Demenev, E.; ;Grassi, M. ;Malcovati, P. ;Mele, F.; ;Nuti, A.; ;Pirrotta, S. ;Pliego-Caballero, S. ;Puccetti, S.; ; Trevisan, S.HERMES (High Energy Rapid Modular Ensemble of Satellites) Pathfinder mission aims to observe and localize Gamma Ray Bursts (GRBs) and other transients using a constellation of nanosatellites in low-Earth orbit (LEO). Scheduled for launch in early 2025, the 3U CubeSats will host miniaturized instruments featuring a hybrid Silicon Drift Detector (SDD) and GAGG:Ce scintillator photodetector system, sensitive to X-rays and gamma-rays across a wide energy range. Each HERMES payload contains 120 SDD cells, each with a sensitive area of 45 mm^2, organized into 12 matrices, reading out 60 12.1x6.94x15.0 mm^3 GAGG:Ce scintillators. Photons interacting with an SDD are identified as X-ray events (2-60 keV), while photons in the 20-2000 keV range absorbed by the crystals produce scintillation light, which is read by two SDDs, allowing event discrimination. The detector system, including front-end and back-end electronics, a power supply unit, a chip-scale atomic clock, and a payload data handling unit, fits within a 10x10x10 cm^3 volume, weighs 1.5 kg, and has a maximum power consumption of about 2 W. This paper outlines the development of the HERMES constellation, the design and selection of the payload detectors, and laboratory testing, presenting the results of detector calibrations and environmental tests to provide a comprehensive status update of the mission. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Design and development of the HERMES Pathfinder payloads(2024); ; ; ;Guzman, A. ;Baroni, G. ;Della Casa, G. ;Dilillo, G. ;Hedderman, P. ;Marchesini, E. J. ;Bertuccio, G. ;Ceraudo, F. ;Demenev, E.; ;Grassi, M. ;Malcovati, P. ;Mele, F.; ;Nuti, A.; ;Pirrotta, S. ;Pliego-Caballero, S. ;Puccetti, S.; ; Trevisan, S.HERMES (High Energy Rapid Modular Ensemble of Satellites) Pathfinder mission aims to observe and localize Gamma Ray Bursts (GRBs) and other transients using a constellation of nanosatellites in low-Earth orbit (LEO). Scheduled for launch in early 2025, the 3U CubeSats will host miniaturized instruments featuring a hybrid Silicon Drift Detector (SDD) and GAGG:Ce scintillator photodetector system, sensitive to X-rays and gamma-rays across a wide energy range. Each HERMES payload contains 120 SDD cells, each with a sensitive area of 45 mm^2, organized into 12 matrices, reading out 60 12.1x6.94x15.0 mm^3 GAGG:Ce scintillators. Photons interacting with an SDD are identified as X-ray events (2-60 keV), while photons in the 20-2000 keV range absorbed by the crystals produce scintillation light, which is read by two SDDs, allowing event discrimination. The detector system, including front-end and back-end electronics, a power supply unit, a chip-scale atomic clock, and a payload data handling unit, fits within a 10x10x10 cm^3 volume, weighs 1.5 kg, and has a maximum power consumption of about 2 W. This paper outlines the development of the HERMES constellation, the design and selection of the payload detectors, and laboratory testing, presenting the results of detector calibrations and environmental tests to provide a comprehensive status update of the mission. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Discovering Large-Scale Structure at $2<z<5$ in the C3VO Survey(2024) ;Hung, Denise ;Lemaux, Brian C.; ;Forrest, Ben ;Shah, Ekta A. ;Gal, Roy R. ;Giddings, Finn ;Sikorski, Derek; ;Lubin, Lori M. ;Hathi, Nimish; ; ; ; ; ; ;Guaita, Lucia; ;Lee, Kyoung-Soo ;Newman, Andrew B. ;Ramakrishnan, Vandana; ; The Charting Cluster Construction with VUDS and ORELSE (C3VO) survey is an ongoing imaging and spectroscopic campaign aiming to map out the growth of structure up to $z\sim5$ and was born from the combination of the VIMOS Ultra Deep Survey (VUDS) and the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. As we previously accomplished with the ORELSE survey, we apply our technique known as Voronoi tessellation Monte-Carlo (VMC) mapping to search for serendipitous galaxy overdensities at $2<z<5$ in the three C3VO fields. We also apply the same technique to mock observations of simulated galaxies with properties derived from the GAlaxy Evolution and Assembly (GAEA) semi-analytic model (SAM) in order to judge the effectiveness of our as a function of redshift, total mass, and fraction of spectroscopic redshifts. We find typical completeness and purity values of the order 30-50%, with a strong dependence on mass and redshift, with values as high as $\sim$80% and $\sim$70%, respectively, in the best-case scenario for $\log (M_{z=0}/M_{\odot}) > 14$. In the C3VO fields, we were able to recover many of the previously known structures in the literature as well as find hundreds of new overdensity candidates, once again demonstrating the powerful capabilities of VMC mapping when applied to wide-field optical and infrared galaxy evolution surveys at ever higher redshifts. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Discovering Large-Scale Structure at $2<z<5$ in the C3VO Survey(2024) ;Hung, Denise ;Lemaux, Brian C.; ;Forrest, Ben ;Shah, Ekta A. ;Gal, Roy R. ;Giddings, Finn ;Sikorski, Derek; ;Lubin, Lori M. ;Hathi, Nimish; ; ; ; ; ; ;Guaita, Lucia; ;Lee, Kyoung-Soo ;Newman, Andrew B. ;Ramakrishnan, Vandana; ; The Charting Cluster Construction with VUDS and ORELSE (C3VO) survey is an ongoing imaging and spectroscopic campaign aiming to map out the growth of structure up to $z\sim5$ and was born from the combination of the VIMOS Ultra Deep Survey (VUDS) and the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. As we previously accomplished with the ORELSE survey, we apply our technique known as Voronoi tessellation Monte-Carlo (VMC) mapping to search for serendipitous galaxy overdensities at $2<z<5$ in the three C3VO fields. We also apply the same technique to mock observations of simulated galaxies with properties derived from the GAlaxy Evolution and Assembly (GAEA) semi-analytic model (SAM) in order to judge the effectiveness of our as a function of redshift, total mass, and fraction of spectroscopic redshifts. We find typical completeness and purity values of the order 30-50%, with a strong dependence on mass and redshift, with values as high as $\sim$80% and $\sim$70%, respectively, in the best-case scenario for $\log (M_{z=0}/M_{\odot}) > 14$. In the C3VO fields, we were able to recover many of the previously known structures in the literature as well as find hundreds of new overdensity candidates, once again demonstrating the powerful capabilities of VMC mapping when applied to wide-field optical and infrared galaxy evolution surveys at ever higher redshifts. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Discovering Large-Scale Structure at $2<z<5$ in the C3VO Survey(2024) ;Hung, Denise ;Lemaux, Brian C.; ;Forrest, Ben ;Shah, Ekta A. ;Gal, Roy R. ;Giddings, Finn ;Sikorski, Derek; ;Lubin, Lori M. ;Hathi, Nimish; ; ; ; ; ; ;Guaita, Lucia; ;Lee, Kyoung-Soo ;Newman, Andrew B. ;Ramakrishnan, Vandana; ; The Charting Cluster Construction with VUDS and ORELSE (C3VO) survey is an ongoing imaging and spectroscopic campaign aiming to map out the growth of structure up to $z\sim5$ and was born from the combination of the VIMOS Ultra Deep Survey (VUDS) and the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. As we previously accomplished with the ORELSE survey, we apply our technique known as Voronoi tessellation Monte-Carlo (VMC) mapping to search for serendipitous galaxy overdensities at $2<z<5$ in the three C3VO fields. We also apply the same technique to mock observations of simulated galaxies with properties derived from the GAlaxy Evolution and Assembly (GAEA) semi-analytic model (SAM) in order to judge the effectiveness of our as a function of redshift, total mass, and fraction of spectroscopic redshifts. We find typical completeness and purity values of the order 30-50%, with a strong dependence on mass and redshift, with values as high as $\sim$80% and $\sim$70%, respectively, in the best-case scenario for $\log (M_{z=0}/M_{\odot}) > 14$. In the C3VO fields, we were able to recover many of the previously known structures in the literature as well as find hundreds of new overdensity candidates, once again demonstrating the powerful capabilities of VMC mapping when applied to wide-field optical and infrared galaxy evolution surveys at ever higher redshifts. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Discovery of Polarized X-Ray Emission from the Accreting Millisecond Pulsar SRGA J144459.2-604207(2024); ; ;Poutanen, Juri ;Salmi, Tuomo; ; ; ;Bobrikova, Anna; ;Ballocco, Caterina; ; ;Coti Zelati, Francesco; ; ;Loktev, Vladislav ;Long, Sinan; ; ;Ng, Mason; ; ; ;Strohmayer, TodZane, SilviaWe report on the discovery of polarized X-ray emission from an accreting millisecond pulsar. During a 10-day-long coverage of the February 2024 outburst of SRGA J144459.2-604207, the Imaging X-ray Polarimetry Explorer (IXPE) detected an average polarization degree of the 2-8 keV emission of 2.3% +/- 0.4% at an angle of 59° +/- 6° (East of North; uncertainties quoted at the 1${\sigma}$ confidence level). The polarized signal shows a significant energy dependence with a degree of 4.0% +/- 0.5% between 3 and 6 keV and < 2% (90% c.l.) in the 2-3 keV range. We used NICER, XMM-Newton, and NuSTAR observations to obtain an accurate pulse timing solution and perform a phase-resolved polarimetric analysis of IXPE data. We did not detect any significant variability of the Stokes parameters Q and U with the spin and the orbital phases. We used the relativistic rotating vector model to show that a moderately fan-beam emission from two point-like spots at a small magnetic obliquity ($\simeq$ 10°) is compatible with the observed pulse profile and polarization properties. IXPE also detected 52 type-I X-ray bursts, with a recurrence time $\Delta t_{rec}$ increasing from 2 to 8 h as a function of the observed count rate $C$ as as $\Delta t_{rec} \simeq C^{-0.8}$ We stacked the emission observed during all the bursts and obtained an upper limit on the polarization degree of 8.5% (90% c.l.). - Some of the metrics are blocked by yourconsent settings
Product Metadata only Discovery of Polarized X-Ray Emission from the Accreting Millisecond Pulsar SRGA J144459.2-604207(2024); ; ;Poutanen, Juri ;Salmi, Tuomo; ; ; ;Bobrikova, Anna; ;Ballocco, Caterina; ; ;Coti Zelati, Francesco; ; ;Loktev, Vladislav ;Long, Sinan; ; ;Ng, Mason; ; ; ;Strohmayer, TodZane, SilviaWe report on the discovery of polarized X-ray emission from an accreting millisecond pulsar. During a 10-day-long coverage of the February 2024 outburst of SRGA J144459.2-604207, the Imaging X-ray Polarimetry Explorer (IXPE) detected an average polarization degree of the 2-8 keV emission of 2.3% +/- 0.4% at an angle of 59° +/- 6° (East of North; uncertainties quoted at the 1${\sigma}$ confidence level). The polarized signal shows a significant energy dependence with a degree of 4.0% +/- 0.5% between 3 and 6 keV and < 2% (90% c.l.) in the 2-3 keV range. We used NICER, XMM-Newton, and NuSTAR observations to obtain an accurate pulse timing solution and perform a phase-resolved polarimetric analysis of IXPE data. We did not detect any significant variability of the Stokes parameters Q and U with the spin and the orbital phases. We used the relativistic rotating vector model to show that a moderately fan-beam emission from two point-like spots at a small magnetic obliquity ($\simeq$ 10°) is compatible with the observed pulse profile and polarization properties. IXPE also detected 52 type-I X-ray bursts, with a recurrence time $\Delta t_{rec}$ increasing from 2 to 8 h as a function of the observed count rate $C$ as as $\Delta t_{rec} \simeq C^{-0.8}$ We stacked the emission observed during all the bursts and obtained an upper limit on the polarization degree of 8.5% (90% c.l.). - Some of the metrics are blocked by yourconsent settings
Product Metadata only Discovery of Polarized X-Ray Emission from the Accreting Millisecond Pulsar SRGA J144459.2-604207(2024); ; ;Poutanen, Juri ;Salmi, Tuomo; ; ; ;Bobrikova, Anna; ;Ballocco, Caterina; ; ;Coti Zelati, Francesco; ; ;Loktev, Vladislav ;Long, Sinan; ; ;Ng, Mason; ; ; ;Strohmayer, TodZane, SilviaWe report on the discovery of polarized X-ray emission from an accreting millisecond pulsar. During a 10-day-long coverage of the February 2024 outburst of SRGA J144459.2-604207, the Imaging X-ray Polarimetry Explorer (IXPE) detected an average polarization degree of the 2-8 keV emission of 2.3% +/- 0.4% at an angle of 59° +/- 6° (East of North; uncertainties quoted at the 1${\sigma}$ confidence level). The polarized signal shows a significant energy dependence with a degree of 4.0% +/- 0.5% between 3 and 6 keV and < 2% (90% c.l.) in the 2-3 keV range. We used NICER, XMM-Newton, and NuSTAR observations to obtain an accurate pulse timing solution and perform a phase-resolved polarimetric analysis of IXPE data. We did not detect any significant variability of the Stokes parameters Q and U with the spin and the orbital phases. We used the relativistic rotating vector model to show that a moderately fan-beam emission from two point-like spots at a small magnetic obliquity ($\simeq$ 10°) is compatible with the observed pulse profile and polarization properties. IXPE also detected 52 type-I X-ray bursts, with a recurrence time $\Delta t_{rec}$ increasing from 2 to 8 h as a function of the observed count rate $C$ as as $\Delta t_{rec} \simeq C^{-0.8}$ We stacked the emission observed during all the bursts and obtained an upper limit on the polarization degree of 8.5% (90% c.l.). - Some of the metrics are blocked by yourconsent settings
Product Metadata only Enhanced AGN Activity in Overdense Galactic Environments at $2 < z < 4$(2024) ;Shah, Ekta A. ;Lemaux, Brian C. ;Forrest, Benjamin ;Hathi, Nimish ;Shen, Lu; ;Hung, Denise ;Giddings, Finn ;Sikorski, Derek ;Lubin, Lori ;Gal, Roy R.; ; ; ; ; ;Gururajan, Gayathri ;Suh, Hyewon; We conduct a study on the relationship between galaxy environments and their active galactic nuclei (AGN) activity at high redshifts ($2.0<z<4.0$). Specifically, we study the AGN fraction in galaxies residing in a range of environments at these redshifts, from field galaxies to highly overdense peaks in the GOODS-S extragalactic field. Utilizing the extensive photometric and spectroscopic observations in this field, we measure local- and global-overdensities over a large a range of environments, including in several massive (M$_{tot}\geq10^{14.8}$M$_\odot$) protostructures. We employ a multi-wavelength AGN catalog consisting of AGN in nine different categories. Our analysis shows a higher AGN fraction (10.9$^{+3.6}_{-2.3}$%) for galaxies in the highest local-overdensity regions compared to the AGN fraction (1.9$^{+0.4}_{-0.3}$%) of coeval field galaxies (a ~4$\sigma$ difference). This trend of increasing AGN fraction in denser environments relative to the field is present in all redshift bins. We also find this trend consistently present in all five AGN categories that have a sufficient number of AGN to make a meaningful comparison: mid-IR SED, mid-IR color, X-ray luminosity, X-ray-luminosity-to-radio-luminosity-ratio, and optical-spectroscopy. Our results also demonstrate a clear trend of higher (~4x) AGN fractions in denser environments for a given stellar mass. Additionally, we observe the same trend (though at a lower significance) with the global environment of galaxies, measured using a metric based on the projected distance of galaxies from their nearest massive ($M_{tot}>10^{12.8}M_\odot$) overdense ($\sigma_\delta>5.0$) peak, normalized with respect to the size of the peak. These findings indicate that the prevalence of AGN activity is highly dependent on the environment in which a host galaxy resides, even at early times in the formation history of the Universe. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Enhanced AGN Activity in Overdense Galactic Environments at $2 < z < 4$(2024) ;Shah, Ekta A. ;Lemaux, Brian C. ;Forrest, Benjamin ;Hathi, Nimish ;Shen, Lu; ;Hung, Denise ;Giddings, Finn ;Sikorski, Derek ;Lubin, Lori ;Gal, Roy R.; ; ; ; ; ;Gururajan, Gayathri ;Suh, Hyewon; We conduct a study on the relationship between galaxy environments and their active galactic nuclei (AGN) activity at high redshifts ($2.0<z<4.0$). Specifically, we study the AGN fraction in galaxies residing in a range of environments at these redshifts, from field galaxies to highly overdense peaks in the GOODS-S extragalactic field. Utilizing the extensive photometric and spectroscopic observations in this field, we measure local- and global-overdensities over a large a range of environments, including in several massive (M$_{tot}\geq10^{14.8}$M$_\odot$) protostructures. We employ a multi-wavelength AGN catalog consisting of AGN in nine different categories. Our analysis shows a higher AGN fraction (10.9$^{+3.6}_{-2.3}$%) for galaxies in the highest local-overdensity regions compared to the AGN fraction (1.9$^{+0.4}_{-0.3}$%) of coeval field galaxies (a ~4$\sigma$ difference). This trend of increasing AGN fraction in denser environments relative to the field is present in all redshift bins. We also find this trend consistently present in all five AGN categories that have a sufficient number of AGN to make a meaningful comparison: mid-IR SED, mid-IR color, X-ray luminosity, X-ray-luminosity-to-radio-luminosity-ratio, and optical-spectroscopy. Our results also demonstrate a clear trend of higher (~4x) AGN fractions in denser environments for a given stellar mass. Additionally, we observe the same trend (though at a lower significance) with the global environment of galaxies, measured using a metric based on the projected distance of galaxies from their nearest massive ($M_{tot}>10^{12.8}M_\odot$) overdense ($\sigma_\delta>5.0$) peak, normalized with respect to the size of the peak. These findings indicate that the prevalence of AGN activity is highly dependent on the environment in which a host galaxy resides, even at early times in the formation history of the Universe. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Euclid Preparation. Cosmic Dawn Survey: Data release 1 multiwavelength catalogues for Euclid Deep Field North and Euclid Deep Field Fornax(2024) ;Euclid Collaboration ;Zalesky, L. ;McPartland, C. J. R. ;Weaver, J. R. ;Toft, S. ;Sanders, D. B. ;Mobasher, B. ;Suzuki, N. ;Szapudi, I. ;Valdes, I. ;Murphree, G. ;Chartab, N. ;Allen, N. ;Taamoli, S. ;Barrow, S. W. J. ;Chávez Ortiz, O. ;Finkelstein, S. L. ;Gwyn, S. ;Sawicki, M. ;McCracken, H. J. ;Stern, D. ;Dannerbauer, H. ;Altieri, B.; ; ;Baccigalupi, C. ;Baldi, M.; ;Bender, R. ;Bodendorf, C.; ;Branchini, E.; ;Brinchmann, J. ;Camera, S.; ; ;Carretero, J. ;Casas, S. ;Castander, F. J.; ;Castignani, G.; ;Cimatti, A. ;Colodro-Conde, C. ;Congedo, G. ;Conselice, C. J. ;Conversi, L. ;Copin, Y.; ;Courbin, F. ;Courtois, H. M. ;Da Silva, A. ;Degaudenzi, H.; ; ;Dinis, J. ;Dubath, F. ;Duncan, C. A. J. ;Dupac, X. ;Dusini, S.; ;Farrens, S. ;Ferriol, S. ;Fotopoulou, S.; ; ; ;Garilli, B. ;Gillard, W. ;Gillis, B.; ;Gómez-Alvarez, P.; ;Grupp, F. ;Haugan, S. V. H. ;Hoekstra, H. ;Holmes, W. ;Hook, I. ;Hormuth, F. ;Hornstrup, A. ;Hudelot, P. ;Jahnke, K. ;Joachimi, B. ;Keihänen, E. ;Kermiche, S. ;Kiessling, A. ;Kilbinger, M. ;Kubik, B. ;Kuijken, K. ;Kümmel, M. ;Kunz, M. ;Kurki-Suonio, H. ;Laureijs, R.; ;Lilje, P. B. ;Lindholm, V. ;Lloro, I. ;Mainetti, G. ;Maino, D.; ; ;Marggraf, O. ;Markovic, K. ;Martinelli, M. ;Martinet, N. ;Marulli, F. ;Massey, R. ;Maurogordato, S. ;Mei, S. ;Mellier, Y.; ; ;Meylan, G. ;Moresco, M. ;Moscardini, L.; ;Neissner, C. ;Niemi, S. -M. ;Nightingale, J. W. ;Padilla, C. ;Paltani, S. ;Pasian, F. ;Pedersen, K. ;Percival, W. J. ;Pettorino, V. ;Pires, S. ;Polenta, G. ;Poncet, M. ;Popa, L. A.; ;Raison, F. ;Rebolo, R. ;Renzi, A. ;Rhodes, J.; ; ;Roncarelli, M. ;Rossetti, E. ;Saglia, R. ;Sakr, Z. ;Sapone, D. ;Scaramella, R. ;Schirmer, M. ;Schneider, P. ;Schrabback, T. ;Secroun, A.; ;Seidel, G. ;Serrano, S. ;Sirignano, C. ;Sirri, G. ;Stanco, L. ;Steinwagner, J. ;Tallada-Crespí, P. ;Teplitz, H. I. ;Tereno, I. ;Toledo-Moreo, R. ;Torradeflot, F. ;Tutusaus, I. ;Valentijn, E. A.; ;Vassallo, T. ;Verdoes Kleijn, G. ;Veropalumbo, A. ;Wang, Y. ;Weller, J. ;Zamorani, G.; ; ;Boucaud, A. ;Bozzo, E.; ;Di Ferdinando, D. ;Escartin Vigo, J. A.; ;Gracia-Carpio, J. ;Mauri, N. ;Nucita, A. A. ;Scottez, V. ;Tenti, M.; ;Wiesmann, M. ;Akrami, Y. ;Allevato, V. ;Anselmi, S. ;Ballardini, M. ;Bethermin, M. ;Blanchard, A. ;Blot, L.; ;Bruton, S. ;Cabanac, R. ;Calabro, A.; ;Carvalho, C. S. ;Castro, T. ;Chambers, K. C. ;Chary, R. ;Contarini, S. ;Contini, T. ;Cooray, A. R. ;De Caro, B. ;Desprez, G. ;Díaz-Sánchez, A. ;Di Domizio, S. ;Dole, H. ;Escoffier, S. ;Ferrari, A. G. ;Ferrero, I.; ;Fornari, F. ;Gabarra, L. ;Ganga, K. ;García-Bellido, J. ;Gaztanaga, E. ;Giacomini, F. ;Gozaliasl, G. ;Hall, A. ;Hartley, W. G. ;Hildebrandt, H. ;Hjorth, J. ;Huertas-Company, M. ;Ilbert, O. ;Jimenez Muñoz, A. ;Kajava, J. J. E. ;Kansal, V. ;Karagiannis, D. ;Kirkpatrick, C. C. ;Legrand, L. ;Libet, G. ;Loureiro, A. ;Macias-Perez, J.; ; ;Mancini, C.; ;Maoli, R. ;Martins, C. J. A. P. ;Matthew, S. ;Maurin, L. ;Metcalf, R. B.; ;Moretti, C.; ;Walton, Nicholas A. ;Odier, J. ;Patrizii, L. ;Pezzotta, A. ;Pöntinen, M. ;Popa, V. ;Porciani, C. ;Potter, D. ;Reimberg, P. ;Risso, I. ;Rocci, P. -F. ;Sahlén, M. ;Scarlata, C. ;Schneider, A.; ;Silvestri, A. ;Simon, P. ;Spurio Mancini, A. ;Stanford, S. A. ;Tao, C. ;Testera, G. ;Teyssier, R. ;Tosi, S. ;Troja, A. ;Tucci, M. ;Valieri, C. ;Valiviita, J.; ;Verza, G.Zinchenko, I. A.The Cosmic Dawn Survey (DAWN survey) provides multiwavelength (UV/optical to mid-IR) data across the combined 59 deg$^{2}$ of the Euclid Deep and Auxiliary fields (EDFs and EAFs). Here, the first public data release (DR1) from the DAWN survey is presented. DR1 catalogues are made available for a subset of the full DAWN survey that consists of two Euclid Deep fields: Euclid Deep Field North (EDF-N) and Euclid Deep Field Fornax (EDF-F). The DAWN survey DR1 catalogues do not include $Euclid$ data as they are not yet public for these fields. Nonetheless, each field has been covered by the ongoing Hawaii Twenty Square Degree Survey (H20), which includes imaging from CFHT MegaCam in the new $u$ filter and from Subaru Hyper Suprime-Cam (HSC) in the $griz$ filters. Each field is further covered by $Spitzer$/IRAC 3.6-4.5$\mu$m imaging spanning 10 deg$^{2}$ and reaching $\sim$25 mag AB (5$\sigma$). All present H20 imaging and all publicly available imaging from the aforementioned facilities are combined with the deep $Spitzer$/IRAC data to create source catalogues spanning a total area of 16.87 deg$^{2}$ in EDF-N and 2.85 deg$^{2}$ in EDF-F for this first release. Photometry is measured using The Farmer, a well-validated model-based photometry code. Photometric redshifts and stellar masses are computed using two independent codes for modeling spectral energy distributions: EAZY and LePhare. Photometric redshifts show good agreement with spectroscopic redshifts ($\sigma_{\rm NMAD} \sim 0.5, \eta < 8\%$ at $i < 25$). Number counts, photometric redshifts, and stellar masses are further validated in comparison to the COSMOS2020 catalogue. The DAWN survey DR1 catalogues are designed to be of immediate use in these two EDFs and will be continuously updated. Future data releases will provide catalogues of all EDFs and EAFs and include $Euclid$ data. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Euclid Preparation. Cosmic Dawn Survey: Data release 1 multiwavelength catalogues for Euclid Deep Field North and Euclid Deep Field Fornax(2024) ;Euclid Collaboration ;Zalesky, L. ;McPartland, C. J. R. ;Weaver, J. R. ;Toft, S. ;Sanders, D. B. ;Mobasher, B. ;Suzuki, N. ;Szapudi, I. ;Valdes, I. ;Murphree, G. ;Chartab, N. ;Allen, N. ;Taamoli, S. ;Barrow, S. W. J. ;Chávez Ortiz, O. ;Finkelstein, S. L. ;Gwyn, S. ;Sawicki, M. ;McCracken, H. J. ;Stern, D. ;Dannerbauer, H. ;Altieri, B.; ; ;Baccigalupi, C. ;Baldi, M.; ;Bender, R. ;Bodendorf, C.; ;Branchini, E.; ;Brinchmann, J. ;Camera, S.; ; ;Carretero, J. ;Casas, S. ;Castander, F. J.; ;Castignani, G.; ;Cimatti, A. ;Colodro-Conde, C. ;Congedo, G. ;Conselice, C. J. ;Conversi, L. ;Copin, Y.; ;Courbin, F. ;Courtois, H. M. ;Da Silva, A. ;Degaudenzi, H.; ; ;Dinis, J. ;Dubath, F. ;Duncan, C. A. J. ;Dupac, X. ;Dusini, S.; ;Farrens, S. ;Ferriol, S. ;Fotopoulou, S.; ; ; ;Garilli, B. ;Gillard, W. ;Gillis, B.; ;Gómez-Alvarez, P.; ;Grupp, F. ;Haugan, S. V. H. ;Hoekstra, H. ;Holmes, W. ;Hook, I. ;Hormuth, F. ;Hornstrup, A. ;Hudelot, P. ;Jahnke, K. ;Joachimi, B. ;Keihänen, E. ;Kermiche, S. ;Kiessling, A. ;Kilbinger, M. ;Kubik, B. ;Kuijken, K. ;Kümmel, M. ;Kunz, M. ;Kurki-Suonio, H. ;Laureijs, R.; ;Lilje, P. B. ;Lindholm, V. ;Lloro, I. ;Mainetti, G. ;Maino, D.; ; ;Marggraf, O. ;Markovic, K. ;Martinelli, M. ;Martinet, N. ;Marulli, F. ;Massey, R. ;Maurogordato, S. ;Mei, S. ;Mellier, Y.; ; ;Meylan, G. ;Moresco, M. ;Moscardini, L.; ;Neissner, C. ;Niemi, S. -M. ;Nightingale, J. W. ;Padilla, C. ;Paltani, S. ;Pasian, F. ;Pedersen, K. ;Percival, W. J. ;Pettorino, V. ;Pires, S. ;Polenta, G. ;Poncet, M. ;Popa, L. A.; ;Raison, F. ;Rebolo, R. ;Renzi, A. ;Rhodes, J.; ; ;Roncarelli, M. ;Rossetti, E. ;Saglia, R. ;Sakr, Z. ;Sapone, D. ;Scaramella, R. ;Schirmer, M. ;Schneider, P. ;Schrabback, T. ;Secroun, A.; ;Seidel, G. ;Serrano, S. ;Sirignano, C. ;Sirri, G. ;Stanco, L. ;Steinwagner, J. ;Tallada-Crespí, P. ;Teplitz, H. I. ;Tereno, I. ;Toledo-Moreo, R. ;Torradeflot, F. ;Tutusaus, I. ;Valentijn, E. A.; ;Vassallo, T. ;Verdoes Kleijn, G. ;Veropalumbo, A. ;Wang, Y. ;Weller, J. ;Zamorani, G.; ; ;Boucaud, A. ;Bozzo, E.; ;Di Ferdinando, D. ;Escartin Vigo, J. A.; ;Gracia-Carpio, J. ;Mauri, N. ;Nucita, A. A. ;Scottez, V. ;Tenti, M.; ;Wiesmann, M. ;Akrami, Y. ;Allevato, V. ;Anselmi, S. ;Ballardini, M. ;Bethermin, M. ;Blanchard, A. ;Blot, L.; ;Bruton, S. ;Cabanac, R. ;Calabro, A.; ;Carvalho, C. S. ;Castro, T. ;Chambers, K. C. ;Chary, R. ;Contarini, S. ;Contini, T. ;Cooray, A. R. ;De Caro, B. ;Desprez, G. ;Díaz-Sánchez, A. ;Di Domizio, S. ;Dole, H. ;Escoffier, S. ;Ferrari, A. G. ;Ferrero, I.; ;Fornari, F. ;Gabarra, L. ;Ganga, K. ;García-Bellido, J. ;Gaztanaga, E. ;Giacomini, F. ;Gozaliasl, G. ;Hall, A. ;Hartley, W. G. ;Hildebrandt, H. ;Hjorth, J. ;Huertas-Company, M. ;Ilbert, O. ;Jimenez Muñoz, A. ;Kajava, J. J. E. ;Kansal, V. ;Karagiannis, D. ;Kirkpatrick, C. C. ;Legrand, L. ;Libet, G. ;Loureiro, A. ;Macias-Perez, J.; ; ;Mancini, C.; ;Maoli, R. ;Martins, C. J. A. P. ;Matthew, S. ;Maurin, L. ;Metcalf, R. B.; ;Moretti, C.; ;Walton, Nicholas A. ;Odier, J. ;Patrizii, L. ;Pezzotta, A. ;Pöntinen, M. ;Popa, V. ;Porciani, C. ;Potter, D. ;Reimberg, P. ;Risso, I. ;Rocci, P. -F. ;Sahlén, M. ;Scarlata, C. ;Schneider, A.; ;Silvestri, A. ;Simon, P. ;Spurio Mancini, A. ;Stanford, S. A. ;Tao, C. ;Testera, G. ;Teyssier, R. ;Tosi, S. ;Troja, A. ;Tucci, M. ;Valieri, C. ;Valiviita, J.; ;Verza, G.Zinchenko, I. A.The Cosmic Dawn Survey (DAWN survey) provides multiwavelength (UV/optical to mid-IR) data across the combined 59 deg$^{2}$ of the Euclid Deep and Auxiliary fields (EDFs and EAFs). Here, the first public data release (DR1) from the DAWN survey is presented. DR1 catalogues are made available for a subset of the full DAWN survey that consists of two Euclid Deep fields: Euclid Deep Field North (EDF-N) and Euclid Deep Field Fornax (EDF-F). The DAWN survey DR1 catalogues do not include $Euclid$ data as they are not yet public for these fields. Nonetheless, each field has been covered by the ongoing Hawaii Twenty Square Degree Survey (H20), which includes imaging from CFHT MegaCam in the new $u$ filter and from Subaru Hyper Suprime-Cam (HSC) in the $griz$ filters. Each field is further covered by $Spitzer$/IRAC 3.6-4.5$\mu$m imaging spanning 10 deg$^{2}$ and reaching $\sim$25 mag AB (5$\sigma$). All present H20 imaging and all publicly available imaging from the aforementioned facilities are combined with the deep $Spitzer$/IRAC data to create source catalogues spanning a total area of 16.87 deg$^{2}$ in EDF-N and 2.85 deg$^{2}$ in EDF-F for this first release. Photometry is measured using The Farmer, a well-validated model-based photometry code. Photometric redshifts and stellar masses are computed using two independent codes for modeling spectral energy distributions: EAZY and LePhare. Photometric redshifts show good agreement with spectroscopic redshifts ($\sigma_{\rm NMAD} \sim 0.5, \eta < 8\%$ at $i < 25$). Number counts, photometric redshifts, and stellar masses are further validated in comparison to the COSMOS2020 catalogue. The DAWN survey DR1 catalogues are designed to be of immediate use in these two EDFs and will be continuously updated. Future data releases will provide catalogues of all EDFs and EAFs and include $Euclid$ data. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Euclid Preparation. Cosmic Dawn Survey: Data release 1 multiwavelength catalogues for Euclid Deep Field North and Euclid Deep Field Fornax(2024) ;Euclid Collaboration ;Zalesky, L. ;McPartland, C. J. R. ;Weaver, J. R. ;Toft, S. ;Sanders, D. B. ;Mobasher, B. ;Suzuki, N. ;Szapudi, I. ;Valdes, I. ;Murphree, G. ;Chartab, N. ;Allen, N. ;Taamoli, S. ;Barrow, S. W. J. ;Chávez Ortiz, O. ;Finkelstein, S. L. ;Gwyn, S. ;Sawicki, M. ;McCracken, H. J. ;Stern, D. ;Dannerbauer, H. ;Altieri, B.; ; ;Baccigalupi, C. ;Baldi, M.; ;Bender, R. ;Bodendorf, C.; ;Branchini, E.; ;Brinchmann, J. ;Camera, S.; ; ;Carretero, J. ;Casas, S. ;Castander, F. J.; ;Castignani, G.; ;Cimatti, A. ;Colodro-Conde, C. ;Congedo, G. ;Conselice, C. J. ;Conversi, L. ;Copin, Y.; ;Courbin, F. ;Courtois, H. M. ;Da Silva, A. ;Degaudenzi, H.; ; ;Dinis, J. ;Dubath, F. ;Duncan, C. A. J. ;Dupac, X. ;Dusini, S.; ;Farrens, S. ;Ferriol, S. ;Fotopoulou, S.; ; ; ;Garilli, B. ;Gillard, W. ;Gillis, B.; ;Gómez-Alvarez, P.; ;Grupp, F. ;Haugan, S. V. H. ;Hoekstra, H. ;Holmes, W. ;Hook, I. ;Hormuth, F. ;Hornstrup, A. ;Hudelot, P. ;Jahnke, K. ;Joachimi, B. ;Keihänen, E. ;Kermiche, S. ;Kiessling, A. ;Kilbinger, M. ;Kubik, B. ;Kuijken, K. ;Kümmel, M. ;Kunz, M. ;Kurki-Suonio, H. ;Laureijs, R.; ;Lilje, P. B. ;Lindholm, V. ;Lloro, I. ;Mainetti, G. ;Maino, D.; ; ;Marggraf, O. ;Markovic, K. ;Martinelli, M. ;Martinet, N. ;Marulli, F. ;Massey, R. ;Maurogordato, S. ;Mei, S. ;Mellier, Y.; ; ;Meylan, G. ;Moresco, M. ;Moscardini, L.; ;Neissner, C. ;Niemi, S. -M. ;Nightingale, J. W. ;Padilla, C. ;Paltani, S. ;Pasian, F. ;Pedersen, K. ;Percival, W. J. ;Pettorino, V. ;Pires, S. ;Polenta, G. ;Poncet, M. ;Popa, L. A.; ;Raison, F. ;Rebolo, R. ;Renzi, A. ;Rhodes, J.; ; ;Roncarelli, M. ;Rossetti, E. ;Saglia, R. ;Sakr, Z. ;Sapone, D. ;Scaramella, R. ;Schirmer, M. ;Schneider, P. ;Schrabback, T. ;Secroun, A.; ;Seidel, G. ;Serrano, S. ;Sirignano, C. ;Sirri, G. ;Stanco, L. ;Steinwagner, J. ;Tallada-Crespí, P. ;Teplitz, H. I. ;Tereno, I. ;Toledo-Moreo, R. ;Torradeflot, F. ;Tutusaus, I. ;Valentijn, E. A.; ;Vassallo, T. ;Verdoes Kleijn, G. ;Veropalumbo, A. ;Wang, Y. ;Weller, J. ;Zamorani, G.; ; ;Boucaud, A. ;Bozzo, E.; ;Di Ferdinando, D. ;Escartin Vigo, J. A.; ;Gracia-Carpio, J. ;Mauri, N. ;Nucita, A. A. ;Scottez, V. ;Tenti, M.; ;Wiesmann, M. ;Akrami, Y. ;Allevato, V. ;Anselmi, S. ;Ballardini, M. ;Bethermin, M. ;Blanchard, A. ;Blot, L.; ;Bruton, S. ;Cabanac, R. ;Calabro, A.; ;Carvalho, C. S. ;Castro, T. ;Chambers, K. C. ;Chary, R. ;Contarini, S. ;Contini, T. ;Cooray, A. R. ;De Caro, B. ;Desprez, G. ;Díaz-Sánchez, A. ;Di Domizio, S. ;Dole, H. ;Escoffier, S. ;Ferrari, A. G. ;Ferrero, I.; ;Fornari, F. ;Gabarra, L. ;Ganga, K. ;García-Bellido, J. ;Gaztanaga, E. ;Giacomini, F. ;Gozaliasl, G. ;Hall, A. ;Hartley, W. G. ;Hildebrandt, H. ;Hjorth, J. ;Huertas-Company, M. ;Ilbert, O. ;Jimenez Muñoz, A. ;Kajava, J. J. E. ;Kansal, V. ;Karagiannis, D. ;Kirkpatrick, C. C. ;Legrand, L. ;Libet, G. ;Loureiro, A. ;Macias-Perez, J.; ; ;Mancini, C.; ;Maoli, R. ;Martins, C. J. A. P. ;Matthew, S. ;Maurin, L. ;Metcalf, R. B.; ;Moretti, C.; ;Walton, Nicholas A. ;Odier, J. ;Patrizii, L. ;Pezzotta, A. ;Pöntinen, M. ;Popa, V. ;Porciani, C. ;Potter, D. ;Reimberg, P. ;Risso, I. ;Rocci, P. -F. ;Sahlén, M. ;Scarlata, C. ;Schneider, A.; ;Silvestri, A. ;Simon, P. ;Spurio Mancini, A. ;Stanford, S. A. ;Tao, C. ;Testera, G. ;Teyssier, R. ;Tosi, S. ;Troja, A. ;Tucci, M. ;Valieri, C. ;Valiviita, J.; ;Verza, G.Zinchenko, I. A.The Cosmic Dawn Survey (DAWN survey) provides multiwavelength (UV/optical to mid-IR) data across the combined 59 deg$^{2}$ of the Euclid Deep and Auxiliary fields (EDFs and EAFs). Here, the first public data release (DR1) from the DAWN survey is presented. DR1 catalogues are made available for a subset of the full DAWN survey that consists of two Euclid Deep fields: Euclid Deep Field North (EDF-N) and Euclid Deep Field Fornax (EDF-F). The DAWN survey DR1 catalogues do not include $Euclid$ data as they are not yet public for these fields. Nonetheless, each field has been covered by the ongoing Hawaii Twenty Square Degree Survey (H20), which includes imaging from CFHT MegaCam in the new $u$ filter and from Subaru Hyper Suprime-Cam (HSC) in the $griz$ filters. Each field is further covered by $Spitzer$/IRAC 3.6-4.5$\mu$m imaging spanning 10 deg$^{2}$ and reaching $\sim$25 mag AB (5$\sigma$). All present H20 imaging and all publicly available imaging from the aforementioned facilities are combined with the deep $Spitzer$/IRAC data to create source catalogues spanning a total area of 16.87 deg$^{2}$ in EDF-N and 2.85 deg$^{2}$ in EDF-F for this first release. Photometry is measured using The Farmer, a well-validated model-based photometry code. Photometric redshifts and stellar masses are computed using two independent codes for modeling spectral energy distributions: EAZY and LePhare. Photometric redshifts show good agreement with spectroscopic redshifts ($\sigma_{\rm NMAD} \sim 0.5, \eta < 8\%$ at $i < 25$). Number counts, photometric redshifts, and stellar masses are further validated in comparison to the COSMOS2020 catalogue. The DAWN survey DR1 catalogues are designed to be of immediate use in these two EDFs and will be continuously updated. Future data releases will provide catalogues of all EDFs and EAFs and include $Euclid$ data. - Some of the metrics are blocked by yourconsent settings
Product Metadata only Euclid Preparation. Cosmic Dawn Survey: Data release 1 multiwavelength catalogues for Euclid Deep Field North and Euclid Deep Field Fornax(2024) ;Euclid Collaboration ;Zalesky, L. ;McPartland, C. J. R. ;Weaver, J. R. ;Toft, S. ;Sanders, D. B. ;Mobasher, B. ;Suzuki, N. ;Szapudi, I. ;Valdes, I. ;Murphree, G. ;Chartab, N. ;Allen, N. ;Taamoli, S. ;Barrow, S. W. J. ;Chávez Ortiz, O. ;Finkelstein, S. L. ;Gwyn, S. ;Sawicki, M. ;McCracken, H. J. ;Stern, D. ;Dannerbauer, H. ;Altieri, B.; ; ;Baccigalupi, C. ;Baldi, M.; ;Bender, R. ;Bodendorf, C.; ;Branchini, E.; ;Brinchmann, J. ;Camera, S.; ; ;Carretero, J. ;Casas, S. ;Castander, F. J.; ;Castignani, G.; ;Cimatti, A. ;Colodro-Conde, C. ;Congedo, G. ;Conselice, C. J. ;Conversi, L. ;Copin, Y.; ;Courbin, F. ;Courtois, H. M. ;Da Silva, A. ;Degaudenzi, H.; ; ;Dinis, J. ;Dubath, F. ;Duncan, C. A. J. ;Dupac, X. ;Dusini, S.; ;Farrens, S. ;Ferriol, S. ;Fotopoulou, S.; ; ; ;Garilli, B. ;Gillard, W. ;Gillis, B.; ;Gómez-Alvarez, P.; ;Grupp, F. ;Haugan, S. V. H. ;Hoekstra, H. ;Holmes, W. ;Hook, I. ;Hormuth, F. ;Hornstrup, A. ;Hudelot, P. ;Jahnke, K. ;Joachimi, B. ;Keihänen, E. ;Kermiche, S. ;Kiessling, A. ;Kilbinger, M. ;Kubik, B. ;Kuijken, K. ;Kümmel, M. ;Kunz, M. ;Kurki-Suonio, H. ;Laureijs, R.; ;Lilje, P. B. ;Lindholm, V. ;Lloro, I. ;Mainetti, G. ;Maino, D.; ; ;Marggraf, O. ;Markovic, K. ;Martinelli, M. ;Martinet, N. ;Marulli, F. ;Massey, R. ;Maurogordato, S. ;Mei, S. ;Mellier, Y.; ; ;Meylan, G. ;Moresco, M. ;Moscardini, L.; ;Neissner, C. ;Niemi, S. -M. ;Nightingale, J. W. ;Padilla, C. ;Paltani, S. ;Pasian, F. ;Pedersen, K. ;Percival, W. J. ;Pettorino, V. ;Pires, S. ;Polenta, G. ;Poncet, M. ;Popa, L. A.; ;Raison, F. ;Rebolo, R. ;Renzi, A. ;Rhodes, J.; ; ;Roncarelli, M. ;Rossetti, E. ;Saglia, R. ;Sakr, Z. ;Sapone, D. ;Scaramella, R. ;Schirmer, M. ;Schneider, P. ;Schrabback, T. ;Secroun, A.; ;Seidel, G. ;Serrano, S. ;Sirignano, C. ;Sirri, G. ;Stanco, L. ;Steinwagner, J. ;Tallada-Crespí, P. ;Teplitz, H. I. ;Tereno, I. ;Toledo-Moreo, R. ;Torradeflot, F. ;Tutusaus, I. ;Valentijn, E. A.; ;Vassallo, T. ;Verdoes Kleijn, G. ;Veropalumbo, A. ;Wang, Y. ;Weller, J. ;Zamorani, G.; ; ;Boucaud, A. ;Bozzo, E.; ;Di Ferdinando, D. ;Escartin Vigo, J. A.; ;Gracia-Carpio, J. ;Mauri, N. ;Nucita, A. A. ;Scottez, V. ;Tenti, M.; ;Wiesmann, M. ;Akrami, Y. ;Allevato, V. ;Anselmi, S. ;Ballardini, M. ;Bethermin, M. ;Blanchard, A. ;Blot, L.; ;Bruton, S. ;Cabanac, R. ;Calabro, A.; ;Carvalho, C. S. ;Castro, T. ;Chambers, K. C. ;Chary, R. ;Contarini, S. ;Contini, T. ;Cooray, A. R. ;De Caro, B. ;Desprez, G. ;Díaz-Sánchez, A. ;Di Domizio, S. ;Dole, H. ;Escoffier, S. ;Ferrari, A. G. ;Ferrero, I.; ;Fornari, F. ;Gabarra, L. ;Ganga, K. ;García-Bellido, J. ;Gaztanaga, E. ;Giacomini, F. ;Gozaliasl, G. ;Hall, A. ;Hartley, W. G. ;Hildebrandt, H. ;Hjorth, J. ;Huertas-Company, M. ;Ilbert, O. ;Jimenez Muñoz, A. ;Kajava, J. J. E. ;Kansal, V. ;Karagiannis, D. ;Kirkpatrick, C. C. ;Legrand, L. ;Libet, G. ;Loureiro, A. ;Macias-Perez, J.; ; ;Mancini, C.; ;Maoli, R. ;Martins, C. J. A. P. ;Matthew, S. ;Maurin, L. ;Metcalf, R. B.; ;Moretti, C.; ;Walton, Nicholas A. ;Odier, J. ;Patrizii, L. ;Pezzotta, A. ;Pöntinen, M. ;Popa, V. ;Porciani, C. ;Potter, D. ;Reimberg, P. ;Risso, I. ;Rocci, P. -F. ;Sahlén, M. ;Scarlata, C. ;Schneider, A.; ;Silvestri, A. ;Simon, P. ;Spurio Mancini, A. ;Stanford, S. A. ;Tao, C. ;Testera, G. ;Teyssier, R. ;Tosi, S. ;Troja, A. ;Tucci, M. ;Valieri, C. ;Valiviita, J.; ;Verza, G.Zinchenko, I. A.The Cosmic Dawn Survey (DAWN survey) provides multiwavelength (UV/optical to mid-IR) data across the combined 59 deg$^{2}$ of the Euclid Deep and Auxiliary fields (EDFs and EAFs). Here, the first public data release (DR1) from the DAWN survey is presented. DR1 catalogues are made available for a subset of the full DAWN survey that consists of two Euclid Deep fields: Euclid Deep Field North (EDF-N) and Euclid Deep Field Fornax (EDF-F). The DAWN survey DR1 catalogues do not include $Euclid$ data as they are not yet public for these fields. Nonetheless, each field has been covered by the ongoing Hawaii Twenty Square Degree Survey (H20), which includes imaging from CFHT MegaCam in the new $u$ filter and from Subaru Hyper Suprime-Cam (HSC) in the $griz$ filters. Each field is further covered by $Spitzer$/IRAC 3.6-4.5$\mu$m imaging spanning 10 deg$^{2}$ and reaching $\sim$25 mag AB (5$\sigma$). All present H20 imaging and all publicly available imaging from the aforementioned facilities are combined with the deep $Spitzer$/IRAC data to create source catalogues spanning a total area of 16.87 deg$^{2}$ in EDF-N and 2.85 deg$^{2}$ in EDF-F for this first release. Photometry is measured using The Farmer, a well-validated model-based photometry code. Photometric redshifts and stellar masses are computed using two independent codes for modeling spectral energy distributions: EAZY and LePhare. Photometric redshifts show good agreement with spectroscopic redshifts ($\sigma_{\rm NMAD} \sim 0.5, \eta < 8\%$ at $i < 25$). Number counts, photometric redshifts, and stellar masses are further validated in comparison to the COSMOS2020 catalogue. The DAWN survey DR1 catalogues are designed to be of immediate use in these two EDFs and will be continuously updated. Future data releases will provide catalogues of all EDFs and EAFs and include $Euclid$ data.